- JavaScript 中,深拷贝(Deep Copy)和浅拷贝(Shallow Copy)
跳房子的前端
前端面试javascript开发语言ecmascript
在JavaScript中,深拷贝(DeepCopy)和浅拷贝(ShallowCopy)是用于复制对象或数组的两种不同方法。了解它们的区别和应用场景对于避免潜在的bugs和高效地处理数据非常重要。以下是对深拷贝和浅拷贝的详细解释,包括它们的概念、用途、优缺点以及实现方式。1.浅拷贝(ShallowCopy)概念定义:浅拷贝是指创建一个新的对象或数组,其中包含了原对象或数组的基本数据类型的值和对引用数
- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 云服务业界动态简报-20180128
Captain7
一、青云青云QingCloud推出深度学习平台DeepLearningonQingCloud,包含了主流的深度学习框架及数据科学工具包,通过QingCloudAppCenter一键部署交付,可以让算法工程师和数据科学家快速构建深度学习开发环境,将更多的精力放在模型和算法调优。二、腾讯云1.腾讯云正式发布腾讯专有云TCE(TencentCloudEnterprise)矩阵,涵盖企业版、大数据版、AI
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- el-dialog高度设置
夏之小星星
前端vue.jselementuicss
el-dialog高度设置::v-deep.el-dialog{height:78vh;overflow:auto;}
- elementuiPlus取消el-input的边框
qq_39016177
elementui
elementuiPlus取消el-input的边框1.通常取消边框的方法设置border为none2.还有其他类似边框的例如outlinebox-shadow这两个属性都是会产生边框效果3.el-input需要更改的话–如下需要修改box-shadow为空即可上代码:deep(.el-input__wrapper){align-items:center;background-color:#F7F
- 【双语新闻】AGI安全与对齐,DeepMind近期工作
曲奇人工智能安全
agi安全llama人工智能
我们想与AF社区分享我们最近的工作总结。以下是关于我们正在做什么,为什么会这么做以及我们认为它的意义所在的一些详细信息。我们希望这能帮助人们从我们的工作基础上继续发展,并了解他们的工作如何与我们相关联。byRohinShah,SebFarquhar,AncaDragan21stAug2024AIAlignmentForumWewantedtosharearecapofourrecentoutput
- [Kaiming]Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
MTandHJ
neuralnetworks
文章目录概主要内容PReLUKaiming初始化ForwardcaseBackwardcaseHeK,ZhangX,RenS,etal.DelvingDeepintoRectifiers:SurpassingHuman-LevelPerformanceonImageNetClassification[C].internationalconferenceoncomputervision,2015:1
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 前端开发需要了解的算法知识
史努比的大头
算法前端
手写深拷贝functiondeepClone(obj){//处理基础数据类型和函数if(obj===null||typeofobj!=='object'){returnobj;}//处理数组if(Array.isArray(obj)){returnobj.map(item=>deepClone(item));}//处理对象constclonedObj={};for(constkeyinobj){i
- 推荐开源项目:PyTorch-Metric-Learning
潘惟妍
推荐开源项目:PyTorch-Metric-Learningpytorch-metric-learningTheeasiestwaytousedeepmetriclearninginyourapplication.Modular,flexible,andextensible.WritteninPyTorch.项目地址:https://gitcode.com/gh_mirrors/py/pytorc
- LLM系列(4):通义千问7B在Swift/DeepSpeed上微调秘诀与实战陷阱避坑指南
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptSwifiDeepSpeed通义千问Qwen
LLM系列(4):通义千问7B在Swift/DeepSpeed上微调秘诀与实战陷阱避坑指南阿里云于2023年8月3日开源通义千问70亿参数模型,包括通用模型Qwen-7B以及对话模型Qwen-7B-Chat,这也是国内首个开源自家大模型的大厂。在诸多权威大模型能力测评基准上,如MMLU、C-Eval、GSM8K、HumanEval、WMT22,通义千问7B均取得了同参数级别开源模型中的最好表现,
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- 加载pkl文件,Python报错AttributeError: Can‘t get attribute ‘DeepFM‘ on <module ‘__main__‘ from...>
Zerol_Yan
Python基础python
背景模型同学发过来的pkl格式的模型,在系统中加载的时候,报错AttributeError:module'__main__'hasnoattribute'LabelEncoderExt',尝试了很多种方式,最后终于解决了这个问题,记录一下,以后遇到类似的可以做参考。项目代码及结构app.pyfrominitimportappimportjsonfromflaskimportrequest@app.
- 使用PyTorch实现的DeepSpeech模型: 强大的语音识别利器
毕艾琳
使用PyTorch实现的DeepSpeech模型:强大的语音识别利器deepspeech.pytorchSpeechRecognitionusingDeepSpeech2.项目地址:https://gitcode.com/gh_mirrors/de/deepspeech.pytorch在今天的数字化世界中,语音识别技术已成为人机交互的关键组成部分。deepspeech.pytorch是一个由Sea
- Deepspeed 结合huggingface Trainer实现多机分布式训练
ningzhao
分布式
目前工作中只使用了单机多卡做微调训练,为了提升训练效率,特实验多机多卡分布式训练。一、环境准备本试验使用两台机器(manager,worker),操作系统ubuntu22.4,每台机器有4个GPU为了使安装配置统一,使用docker容器,docker的安装这里不做介绍。1.网络配置-创建overlay共享网络初始化集群,在manager机器上运行:dockerswarminit#输出结果:Swar
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- Deep learning for Computer Vision with Python(1)从零开始入门计算机视觉
Hazelyu27
计算机视觉大数据计算机视觉深度学习
本书的内容分成三个部分:1.初始阶段初始阶段学习:机器学习、神经网络、卷积神经网络、建立数据集。2.实践阶段实践阶段:深入学习深度学习,理解先进技术,发现最佳实践方式。3.图像网络阶段完成计算机视觉领域的经验积累。使用大规模数据集和真实图片案例作为数据集,包括年龄和性别预测,交通工具模型识别。本书提供了对应网站:http://pyimg.co/fnkxk本文介绍前两章内容:基本介绍和深度学习简介。
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- DeepSeek缓存命中技术,成本降低10倍
智匠MindCraft Al
人工智能gptai功能测试AI编程
DeepSeek系列升级:DeepSeek发布最新的缓存命中技术,有效降低成本至0.1元/百万tokens,适用于文件读取和固定提示词。点评:由于token消耗大部分是在系统提示词中,妥善使用确实可以极大降低成本,同时还能保证较高的输出质量。今天就分享到这里,在智匠AI(MindCraftAI)上可以体验到最新更新的模型。
- COI实验室技能:图像到图像的深度学习开发框架(pytorch版)
山颠海涯
深度学习pytorch人工智能
Basicdeeplearningframeworkforimage-to-image这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image目录1模型开发1-1克隆项目到本地1-2深度学习开发2环境配置2-1安装conda
- auto encoder
war3gu
深度学习
Deepauto-encoder与受限玻尔兹曼机有点像,都可以进行信息的压缩,都可以用作pre-trainning.区别在于受限玻尔兹曼机是无向图模型,而Deepauto-encoder是一种神经网络,中间特别窄的bottleneck的数据作为压缩的codeencoder与decoder的参数可以相互独立,也可以互为逆数字图片auto-encoder,越是deep的auto-encoder,压缩出
- 关于深度森林的一点理解
Y.G Bingo
机器学习方法机器学习神经网络
2017年年初,南京大学周志华老师上传了一篇名为:DeepForest:TowardsAnAlternativetoDeepNeuralNetworks的论文,一石激起千层浪,各大媒体纷纷讨论着,这似乎意味着机器学习的天色要变,实则不然,周志华老师通过微博解释道,此篇论文不过是为机器学习打开了另一扇窗,是另一种思维,而不是真的去替代深度神经网络(DNN)。下面我就简单概括一下我对这篇论文的理解,如
- 【vue使用Sass报错】启动项目报错 Syntax Error: SassError: expected selector
lxx-sissi
vue.jssass前端
出现的问题新项目启动的时候,提示:SyntaxError:SassError:expectedselector看了一下发现是sass使用样式穿透/deep/报的错/deep/其实是已经过期的写法,某个版本之后就不支持了但是我同事并没有出现同样的问题,不知道是为啥,也有可能是电脑(mac)的原因解决办法将/deep/更换为::v-deep但是这个项目是多人协作的,有大量页面使用,修改的话会涉及很多页
- 浅谈lua拷贝
coding·life
Lua初探lua拷贝深拷贝
lua中对象的拷贝分为2种:浅拷贝(ShallowCopy)和深拷贝(DeepCopy)。浅拷贝简单来说只是对一些基本的类型进行复制,而像table这样的类型则直接引用。目前对于浅拷贝有2种说法:1.赋值操作符"="即是浅拷贝2.使用代码实现浅拷贝,代码如下:functionshallow_copy(object)localnewObjectiftype(object)=="table"thenn
- 吐血整理 ChatGPT 3.5/4.0 新手使用手册~ 【2024.09.04 更新】
aiwisland
chatgpt人工智能aiAI编程AI写作
以前我也是通过官网使用,但是经常被封号,就非常不方便,后来有朋友推荐国内工具,用了一阵之后,发现:稳定方便,用着也挺好的。最新的GPT-4o、4omini,可搭配使用~1、最新模型科普:现在人工智能很强大,聊聊天、写论文、搞翻译、写代码、写文案、审合同、情感陪伴等,真是无所不能~本来以为ChatGPT早已普及了,没想到仍然有很多小伙伴还没用上。。。其实使用很简单,可以选通义、智谱、Deepseek
- 【DeepSpeed 教程翻译】三,在 DeepSpeed 中使用 PyTorch Profiler做性能调试和Flops Profiler教程翻译
just_sort
pytorch深度学习人工智能
文章目录0x0.前言0x1.在DeepSpeed中使用PyTorchProfiler做性能调试Profile模型训练的循环标记任意代码范围ProfileCPU/GPU的活动Profile内存消耗0x2.FlopsProfiler总览Flops测量多GPU,多节点,数据并行和模型并行例子和DeepSpeed运行时一起使用在Megatron-LM中使用在DeepSpeed运行环境之外的使用方法在模型推
- halcon深度学习4:深度学习在 OCR的用法-deep_ocr_workflow解析
mlxg99999
halcon深度学习自学
1.什么是OCR技术OCR,全称是OpticalCharacterRecognition,即光学字符识别,面向扫描文件。但是由于现在数字图像的普及,这里泛指文字检测和识别,包括扫描文档和自然场景的文字识别。2、deep_ocr_workflow在深度学习中,只有一篇例子关于OCR就是这一篇,文中介绍了深度OCR模型的建立与使用(如果使用过计量模型的可以较好理解,就是建立模型→设置参数→导入图片→进
- DeepFaceLab小白入门(6):脸部替换以及合成视频!
托尼是塔克
前面的都是准备工作,这个环节才是真的换脸。换脸主要分两部分,1,图片换脸,2,把图片合成视频。7)convertH64debug.bat这个环节是和训练环节相对应的,比如我们之前选的是H64,这里就选带H64的来进行转换。如果之前选了SAE,这里就选SAE。其中的每一种类型两个文件,一个带Debug,一个不带。谁便点一个,不影响结果。默认你可以选带debug的文件。双击后出现的内容如上,显示了这个
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag