- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- 大语言模型LLM代码:PyTorch库与ChatGLM模型
North_D
大语言模型LLM语言模型pytorch人工智能python深度学习自然语言处理大语言模型
文章目录通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyTorchChatGLM3-6B模型代码ChatGLMModel类总览ChatGLMModel类说明ChatGLMModel类核心代码片段通过阅读大语言模型的代码,熟悉并理解PyTorch大语言模型LLM代码:PyTorch库与ChatGLM模型大语言模型中的PyT
- 使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器进行模型检查点处理
MinIO分布式存储
分布式存储MinIOpytorch百度云人工智能
2023年11月,Amazon宣布推出适用于PyTorch的S3连接器。适用于PyTorch的AmazonS3连接器提供了专为S3对象存储构建的PyTorch数据集基元(数据集和数据加载器)的实现。它支持用于随机数据访问模式的地图样式数据集和用于流式处理顺序数据访问模式的可迭代样式数据集。适用于PyTorch的S3连接器还包括一个检查点接口,用于将检查点直接保存和加载到S3存储桶,而无需先保存到本
- 大模型笔记:pytorch实现MOE
UQI-LIUWJ
pytorch学习笔记pytorch人工智能
0导入库importtorchimporttorch.nnasnnimporttorch.nn.functionalasF1专家模型#一个简单的专家模型,可以是任何神经网络架构classExpert(nn.Module):def__init__(self,input_size,output_size):super(Expert,self).__init__()self.fc=nn.Linear(i
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- pytorch笔记:mm VS bmm
UQI-LIUWJ
pytorch学习pytorch笔记人工智能
1bmm(batchmatrixmultiplication)批量矩阵乘法,用于同时处理多个矩阵的乘法bmm的输入是两个3D张量(batchofmatrices),形状分别为(batch_size,n,m)和(batch_size,m,p)bmm输出的形状是(batch_size,n,p)2mmmm是标准的矩阵乘法操作,用于两个二维矩阵相乘mm仅适用于2D张量,输入的形状分别是(n,m)和(m,p
- 神经网络常见激活函数 7-ELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络
文章目录ELU函数+导函数函数和导函数图像优缺点pytorch中的ELU函数tensorflow中的ELU函数ELU指数线性单元:ELU(ExponentialLinearUnit)函数+导函数ELU函数ELU={xx>=0α(ex−1)x=0\\\alpha(e^x-1)\quad&x=0x=0αexx=0\\\alphae^x\quad&x=0x0,x,alpha*(np.exp(x)-1))
- 【PyTorch】transpose() 和 permute() 函数:交换张量维度
彬彬侠
PyTorch基础transposepermute调整张量维度pytorchpython
在PyTorch中,transpose和permute都是用于调整张量维度的函数。它们在很多深度学习任务中非常有用,尤其是在处理张量维度和进行矩阵操作时。1.transpose函数transpose函数用来交换张量的两个维度。它接受两个参数,即需要交换的两个维度的索引。这个操作不会改变张量的数据本身,只是改变了张量的视图。语法torch.transpose(input,dim0,dim1)inpu
- 【ai】李沐 动手深度学学v2 环境安装:anaconda3、pycharm、d2
等风来不如迎风去
AI入门与实战人工智能
cuda-toolkitcuda_12.5.0_windows_network.exe官方课程网站第二版资源下载release版本pycharm版本李沐【动手学深度学习v2PyTorch版】课程笔记CUDA选择11,实际下载12.5.0
- pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
机械心
深度学习pythonpytorch
目录1.采用pytorch进行推理2.采用onnx进行推理2.1pytorch转换为onnx2.2onnx推理3.采用tensorrt进行推理(python环境)3.1onnx转engine文件3.2tensorrt推理4.采用tensorrt进行推理(c++环境)5.采用torch2trt进行推理(python环境)在pytorch框架下,可以很方便进行深度学习模型的搭建、训练和保存。当模型训练
- 大模型中 .safetensors 文件、.ckpt文件和.pth以及.bin文件区别、加载和保存以及转换方式
telllong
深度学习python深度学习人工智能
目录模型格式介绍加载以及保存-加载.safetensors文件:-保存/加载.pth文件:-保存/加载.ckpt文件:-处理.bin文件:模型之间的互相转换pytorch-lightning和pytorchckpt和safetensors模型格式介绍在大型深度学习模型的上下文中,.safetensors、.bin和.pthckpt文件的用途和区别如下:.safetensors文件:这是由Huggi
- 基于PyTorch框架实现,展示如何使用ResNet50进行特征提取,并结合MMD用于领域适应,迁移学习在轴承故障诊断中的应用
QQ_767172261
轴承类pytorch迁移学习人工智能
基于PyTorch框架实现,展示如何使用ResNet50进行特征提取,并结合MMD用于领域适应,迁移学习在轴承故障诊断中的应用_迁移学习轴承诊断DAN:ResNet50-MMD以下文字及代码仅供参考。文章目录1.环境准备2.数据准备3.模型定义4.训练过程1.导入必要的库2.定义模型3.数据准备4.训练过程5.运行代码6.注意事项附说明:、pytorch版本,ResNet50进行特征提取,mmd最
- torch.nn.LSTM介绍
qq_27390023
lstm深度学习机器学习pytorchpython
torch.nn.LSTM是PyTorch提供的一个高级封装,用于构建长短时记忆网络(LSTM)。相比手动实现,torch.nn.LSTM更高效且支持批量处理、双向LSTM、多层LSTM等功能,适合大多数实际应用。LSTM基本原理门控机制(GatingMechanism)是深度学习中常见的一种设计,用于控制信息的流动或选择性更新。门控机制最初出现在循环神经网络(RNN)的改进模型中,如长短时记忆网
- Pytorch学习之路(2)
AAAx1anyu
Pytorch学习之旅pytorch学习人工智能
(PS:请先阅读Pytorch学习之路(1)开篇注释)【因为我也是小菜鸟】Pytorch基础知识1.张量(1)简介0维张量——标量(数字)1维张量——向量2维张量——矩阵3维张量——时间序列数据股价文本数据单张彩色图片(RGB)4维张量——图像5维张量——视频张量的核心是一个数据容器(2)创建tensor1).随机初始化矩阵[torch.rand()]importtorchx=torch.rand
- 使用rknn进行facenet部署
点PY
深度学习模型部署rknn人脸识别
文章目录开源仓库pth转onnxnetron可视化onnx转rknnC++实现开源仓库https://github.com/bubbliiiing/facenet-pytorchpth转onnx修改facenet网络的forward函数代码修改前defforward(self,x,mode="predict"):ifmode==
- 【Python】成功解决ModuleNotFoundError: No module named ‘openpyxl‘
高斯小哥
BUG解决方案合集python新手入门学习
【Python】成功解决ModuleNotFoundError:Nomodulenamed‘openpyxl’欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆)、无监督域适
- 神经网络常见激活函数 6-RReLU函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习机器学习pytorch激活函数
文章目录RReLU函数+导函数函数和导函数图像优缺点pytorch中的RReLU函数tensorflow中的RReLU函数RReLU随机修正线性单元:RandomizedLeakyReLU函数+导函数RReLU函数RReLU={xx≥0axx=0,inputs,alpha*inputs)#创建RReLU激活函数层rrelu=RReLU()#生成随机输入x=tf.random.normal([2])
- pytorch 人脸修复_修复pytorch数据加载器
weixin_26729375
人工智能pythonjava人脸识别
pytorch人脸修复黑客数据科学工作流程(Hackingdatascienceworkflows)Icameacrossaninterestingproblemrecently.AteammateandIwereworkingonaseriesofDeepLearningexperimentsthatinvolvedanimagedatasetthatspannedhundredsofgigab
- 【Pytorch函数】PyTorch随机数生成全解析 | torch.rand()家族函数使用指南
深度求索者
pytorch人工智能python
PyTorch随机数生成全解析|torch.rand()家族函数使用指南一、核心函数参数详解PyTorch提供多种随机数生成函数(注意:无直接torch.random()函数),以下是常用函数及参数:1️⃣torch.rand()-均匀分布torch.rand(*size,*,generator=None,dtype=None,device=None,requires_grad=False)siz
- 深度学习-医学影像诊断
小赖同学啊
人工智能深度学习人工智能
以下以使用深度学习进行医学影像(如X光片)的肺炎诊断为例,为你展示基于PyTorch框架的代码实现。我们将构建一个简单的卷积神经网络(CNN)模型,使用公开的肺炎X光影像数据集进行训练和评估。1.安装必要的库pipinstalltorchtorchvisionnumpymatplotlibpandas2.代码实现importtorchimporttorch.nnasnnimporttorch.op
- 动手学深度学习:3.9 多层感知机的从零开始实现
AI_Younger_Man
#深度学习深度学习神经网络python机器学习
3.9多层感知机的从零开始实现我们已经从上一节里了解了多层感知机的原理。下面,我们一起来动手实现一个多层感知机。首先导入实现所需的包或模块。importtorchimportnumpyasnpimportsyssys.path.append("..")importd2lzh_pytorchasd2lCopytoclipboardErrorCopied3.9.1获取和读取数据这里继续使用Fashio
- 一文解释nn、nn.Module与nn.functional的用法与区别
十二月的猫
零基础入门PyTorch框架pythonpytorch人工智能
个人主页:十二月的猫-CSDN博客系列专栏:零基础入门PyTorch框架_十二月的猫的博客-CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.Torch.nn库3.nn.Module4.nn.functional4.1基本用法4.2常用的functional中的函数4.2.1激活函数4.2.2损失函数4.2.3非线性操作5.小例子6.总结1.前言《零基础入门
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- AI大模型:一文搞懂大模型文件存储格式新宠GGUF
Llama-Turbo
人工智能llama自然语言处理知识图谱语言模型LLM大模型
在日常AI模型训练过程中,训练好的模型权重通常需要以一种格式存储在磁盘中。比如:目前最流行的AI框架PyTorch使用pickle格式存储模型权重文件,还有Huggingface提出的Safetensors格式。本文大介绍大模型文件存储格式新宠GGUF,目前HuggingfaceTransformers已经支持了GGUF格式,同时,像谷歌的Gemma、阿里的Qwen等模型默认已经提供了GGUF格式
- 解决Pytorch的cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
Jurio.21
Python科研经验Pytorchpytorch人工智能pythonGPUCUDAcuDNN
目录1.问题报错2.可能原因2.1GPU内存不足2.2缓存问题2.3CUDA和Pytorch版本不兼容2.4CUDA和cuDNN版本不兼容3.验证CUDA是否可用4.参考1.问题报错在使用GPU加速模型训练的过程中经常会遇到这样的错误:RuntimeError:cuDNNerror:CUDNN_STATUS_NOT_INITIALIZED这个错误通常表示cuDNN库未能正确初始化。2.可能原因2.
- 【PyTorch 】【CUDA】深入了解 PyTorch 中的 CUDA 和 cuDNN 版本及 GPU 信息
丶2136
#cudaAI#pytorchpytorch人工智能gpu算力
目录引言一、环境准备1.1重要的环境依赖1.2安装CUDA和cuDNN1.3示例安装步骤1.4PyTorch、CUDA和cuDNN版本兼容性表二、检查CUDA和cuDNN版本三、检查GPU可用性四、测试PyTorch是否正常工作五、PyTorch中的GPU工作流程五、常见问题解答5.1如何更新CUDA和cuDNN?5.2如何在PyTorch中选择特定的GPU?5.3如何解决CUDA内存不足的问题?
- torch.nn.CrossEntropyLoss()的一些小细节(原理和数学,softmax与dim,ignore_index,报错:0D or 1D target tensor expecte)
老肝犯
人工智能深度学习python机器学习神经网络
目录关于torch.nn.CrossEntropyLoss()数学原理关于熵数学公式pytorch中的torch.nn.CrossEntropyLoss()torch.nn.CrossEntropyLoss()交叉熵函数的使用类别索引代码示例结果关于ignore_index类别概率(独热编码属于此类)代码示例结果和数学公式之间的关系代码展示结果关于报错提示0Dor1Dtargettensorexp
- 深度学习笔记——pytorch构造数据集 Dataset and Dataloader
旺仔喔喔糖
机器学习笔记pytorch人工智能深度学习
系列文章目录机器学习笔记——梯度下降、反向传播机器学习笔记——用pytorch实现线性回归机器学习笔记——pytorch实现逻辑斯蒂回归Logisticregression机器学习笔记——多层线性(回归)模型Multilevel(LinearRegression)Model深度学习笔记——pytorch构造数据集DatasetandDataloader深度学习笔记——pytorch解决多分类问题M
- 【Pytorch实战教程】让数据飞轮转起来:PyTorch Dataset与Dataloader深度指南
若北辰
Pytorch实战教程pytorch人工智能python
文章目录让数据飞轮转起来:PyTorchDataset与Dataloader深度指南一、为什么需要数据管理组件?二、Dataset:数据集的编程接口2.1自定义Dataset三要素2.2实战案例:图像分类数据集三、Dataloader:高效数据流水线3.1核心参数解析3.2数据流可视化3.3多卡训练支持四、综合实战:构建完整数据流五、高级技巧与常见问题5.1内存优化技巧5.2常见错误排查5.3性能
- TensorFlow 与 PyTorch 的直观区别
Cacciatore->
tensorflowpytorch人工智能python机器学习深度学习
背景TensorFlow与PyTorch都是比较流行的深度学习框架。tf由谷歌在2015年发布,而PyTorch则是FacecbookAI研究团队2016年在原来Torch的基础上发布的。tf采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf的早期版本比较复杂,但在集成Keras库之后相当容易上手。PyT
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "xxx@xx.com"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(