本文内容摘自“反欺诈实验室”微信公众号
近日,中国管理科学学会大数据管理专委会、国务院发展研究中心产业互联网课题组、社会科学文献出版社共同举办的《大数据应用蓝皮书:中国大数据应用发展报告No.1(2017)》发布会在北京举行。本书是国内首本研究大数据应用的蓝皮书。
蓝皮书旨在描述当前中国大数据在相关行业及典型代表企业应用的状况,分析当前大数据应用中存在的问题和制约其发展的因素,并根据当前大数据应用的实际情况,对其未来发展趋势做出研判。
蓝皮书认为,从应用的角度看,大数据并非一个全新的产业,而是与已有产业融合,对已有模式的改造、升级和替代。制约大数据发展的往往并不是大数据本身,而是大数据所应用的行业和领域原本存在的问题,如行业管制、行政垄断、要素不能自由流动,等等。因此,推动大数据应用的发展,需对不当的行业管理模式进行改革,对既有利益格局进行调整。即便在企业内部,大数据应用也不仅仅是个技术问题,而且是涉及业务流程重组和管理模式变革的问题,是对企业管理能力的一个考验。
大数据应用的三个关键点
大数据应用的三个关键点是数据从哪里来?数据怎么用?成果谁买单?
数据从哪里来?
关于数据来源,普遍认为互联网及物联网是产生并承载大数据的基地。互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据金矿,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,如房地产交易、大宗商品价格、特定群体消费信息,等等。从严格意义上说,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,也是当前在国内比较常见的应用资源。
在国内还有一类是政府部门掌握的数据资源,普遍认为质量好、价值高,但开放程度差。许多官方统计数据通过灰色渠道流通出来,经过加工成为各种数据产品。《大数据纲要》把公共数据互联开放共享作为努力方向,认为大数据技术可以实现这个目标。实际上,长期以来政府部门间信息数据相互封闭割裂是治理问题而不是技术问题。面向社会的公共数据开放愿望虽十分美好,但恐怕一段时间内可望而不可即。在数据资源方面,国内“小数据”、“中数据”应用并不充分,试图一步跨入大数据时代,借机一并解决前期信息化过程中没能解决的问题,前景并不乐观。另外,由于中国互联网公司业务主要在国内,其大数据资源也不是全球性的。
蓝皮书分析指出,数据从哪里来是我们评价大数据应用的第一个关注点。一是要看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是“富矿”还是“贫矿”,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,如果一个应用没有可靠的数据来源,再好、再高超的数据分析技术都是无本之木。
数据怎么用?
数据怎么用是我们评价大数据应用的第二个关注点。《大数据纲要》规划了许多大数据应用领域和方向,包括公共部门和产业领域,实际上是提出了许多需要大数据解决的问题或期待大数据完成的任务。如何解决这些问题,如何把数据资源转化为解决方案,实现产品化,这是我们特别关注的问题。大数据只是一种手段,并不能无所不包、无所不用。我们关注大数据能做什么、不能做什么,现在看来,大数据主要有以下几种较为常用的功能。
追踪。互联网和物联网无时无刻不在记录,大数据可以追踪、追溯任何一个记录,形成真实的历史轨迹。追踪是许多大数据应用的起点,包括消费者购买行为、购买偏好、支付手段、搜索和浏览历史、位置信息,等等。
识别。在对各种因素全面追踪的基础上,通过定位、比对、筛选,可以实现精准识别,尤其是对语音、图像、视频进行识别,使可分析内容大大丰富,得到的结果更为精准。
画像。通过对同一主体不同数据源的追踪、识别、匹配,形成更立体的刻画和更全面的认识。对消费者画像,可以精准推送广告和产品;对企业画像,可以准确判断其信用及面临的风险。
提示。在历史轨迹、识别和画像基础上,对未来趋势及重复出现的可能性进行预测,当某些指标出现预期变化或超预期变化时给予提示、预警。以前也有基于统计的预测,大数据大大丰富了预测手段,对建立风险控制模型有深刻意义。
匹配。在海量信息中精准追踪和识别,利用相关性、接近性等进行筛选比对,更有效率地实现产品搭售和供需匹配。大数据匹配功能是互联网约车、租房、金融等共享经济新商业模式的基础。
优化。按距离最短、成本最低等给定的原则,通过各种算法对路径、资源等进行优化配置。对企业而言,提高服务水平、提升内部效率;对公共部门而言,节约公共资源、提升公共服务能力。
上述概括并不一定完备,大数据肯定还有其他更好的功能。当前许多貌似复杂的应用,大都可以细分成以上几种类型。例如,贵州推行的“大数据精准扶贫项目”,从大数据应用角度,通过识别、画像,可以对贫困户实现精准筛选和界定,找对扶贫对象;通过追踪、提示,可以对扶贫资金、扶贫行为和扶贫效果进行监控和评估;通过配对、优化,可以更好发挥扶贫资源的作用。这些功能也并不都是大数据所特有的,只是大数据远远超出以前的技术,可以做得更精准、更快、更好。当然,技术无法左右利益,贵州扶贫目标的完成,并不是有了大数据就万事大吉了。
成果谁买单?
成果谁买单是我们评价大数据应用的第三个也是最后一个关注点。道理很简单,不创造价值的应用不是好应用。能不能创造价值,关键看谁买单。我们不需要那些靡费公帑的“样板”工程、“面子”工程,也不需要那些炫耀神技、制造概念的创富故事。我们关注大数据的应用是否实实在在提升能力、改善绩效。如果大数据用于自身的产品设计、营销推广、资源配置,那就看企业竞争力是不是提升了,看企业最终是不是比以前更赚钱了。如果大数据用于为第三方提供服务,那就看是不是有人愿意付费、愿意持续付费。但如果是用于公共领域,还要看政府或公共部门的付费值不值,不仅仅是从出资方的视角看值不值,还要从老百姓的视角看值不值。
当我们面对一项大数据应用时,只要简单问一问上面三个问题——数据哪里来、数据怎么用、成果谁买单——就能揭开许多“伪装”。比如,许多应用并没有可靠的数据来源,或者数据来源不具备可持续性;还有些应用并没有技术或市场支撑,只是借助大数据风口套取政府部门或一些投资者的“傻钱”罢了。当然,如果经得起上述“大数据三问”,也并不一定算得上优秀,但也离优秀的大数据应用不远了。表1列举了本书中收集的几个案例,从数据来源、应用方式和创值空间三个角度,可以清晰揭示大数据是如何应用的。当然,这些案例反映的大数据应用既非面面俱到,也不是尽善尽美。我们希望通过这些实际的案例表明大数据应用踌躇前行的步伐和未来发展的前景。
金融大数据将成为宏观决策和监管的新工具
目前业内的金融大数据强调在微观层面的应用,例如评价消费者的信用风险、支持投资决策、识别金融主体的身份等。随着大数据分析和挖掘技术的不断提高,微观的金融大数据可以经过整合、匹配和建模,来支持宏观的金融监管和决策。传统的金融监管和决策以定性为主,辅助以简化的量化指标,对实际情况缺乏充分的把握,而大数据技术可以充分利用底层的细粒度的微观数据,整合分散的信息,融合不同维度的信息,带来具有及时性、前瞻性和更为准确的决策支持,提高监管水平和决策能力。本节将以金融系统性风险管理、银行存款保险费率的计算、对欺诈交易的检测和经济结构变化四个方面为例介绍金融大数据在宏观金融决策和监管中的应用。
(一)金融关联的系统性风险管理
金融危机之后,全球金融市场的关联性远胜于过去。市场的互动性一旦大大加强,就会导致流动性风险和系统性风险,造成市场恐慌。国内的信贷担保圈(多家企业通过互相担保或联合担保而产生的特殊利益群体)就是金融关联的典型代表。由于信贷市场的发展,关联的企业越来越多,互相形成担保圈,甚至形成一张巨大的网。在经济平稳增长期,担保圈会降低中小企业融资的难度,推动民营经济的发展。然而,一旦经济下行,担保圈就会显露其负面影响——加剧信贷风险。如若处理不当,极易引发系统性金融风险。过去几年,在南方企业担保流行的省份,往往一家企业出现信贷不良,一群企业遭殃,一个行业陷入泥潭,整个地区面临系统性风险,一些本来毫不相干,资金链正常,经营良好的企业也由于担保关联,跌入破产的深渊。
信贷市场担保圈问题一度愈演愈烈,传统的担保圈分析方法对理解、处理担保圈问题作用有限。企业之间担保贷款本来是一种中性的信用增进方式,恰当地使用会产生风险释缓作用,由于担保圈风险迭出,银行和监管部门把问题归结到担保贷款本身,目前各家银行采取了比较严格的限制条款来避免担保贷款的发生。
任何信贷产品都存在风险,金融机构本身就是经营风险的专业机构。本文的研究认为,从专业角度来说,担保圈风险发生的根本原因,是缺乏合适的风险管理工具,没有对担保圈进行正确的风险管理。
目前对于担保圈的量化风险分析存在以下问题。
首先是缺乏担保圈全量的大数据,没有足够的信息支撑。各家银行和当地的监管机构只有局部的企业担保关联数据,构不成完整的担保圈视图,风险信息有缺漏。无法了解整个担保圈相关企业的详细信息,因此处理具有系统性风险特点的担保圈风险具有很大的局限性。
其次是无法对担保圈风险进行建模,对风险进行正确的量化描述。传统的风险分析工具都是对单个企业进行风险建模,适合对企业的贷款金额、贷款质量以及信贷行为建模,对于企业之间的关联关系无法进行量化描述和风险分析。
因此我国有必要借助大数据的复杂系统分析方法,启动对担保圈的深入分析,为化解因担保圈引发的金融风险创造条件。要考虑到如下条件:一是央行征信系统已收集了大量丰富的企业担保关系数据。截至2015年底,中国人民银行征信中心为2146万企业建立了信用档案,有信贷记录的企业超过596万家,关联关系信息(仅限于有贷款卡的用户)超过2亿条。二是复杂网络技术已日趋成熟。复杂网络是由数量巨大的节点(研究对象)和节点之间错综复杂的关系(对象之间的关系)共同构成的网络结构。复杂网络分析技术针对越来越多、越来越复杂的事物之间的关联关系进行非线性建模,可以较好地解决大数据的数据量(Volume)、数据复杂程度(Variety)和处理速率(Velocity)等基本问题。
随着金融市场的创新和发展,金融风险变得越来越复杂,需要更多的数据支撑和复杂的数学模型来量化描述,大数据技术将成为未来金融风险管理的利器。
(二)银行存款保险费率的计算
2015年5月,作为金融市场化进一步深入的重大举措,银行存款保险制度正式开始实施,这不仅有利于稳定宏观金融,也对利率市场化后商业银行的稳健经营和有序竞争有利。存款保险费率的厘定是存款保险制度的一个核心,而保费的估算是设计存款保险方案中的难题之一。保费结构的设计,在很大程度上决定了存款保险对于参保银行的可接受度。想降低道德风险并减少逆向选择,取决于合理的保费结构。国内对于银行存款保险的研究以定性为主,对保险费率计算的量化分析比较欠缺。
从国外信贷数据的应用情况来看,信贷数据有助于银行监管者准确评估监管对象的信用风险状况。对于建立了公共征信系统的国家来说,风险分析技术可以成为有效的监管工具,由于银行业的危机通常和高的不良贷款率相关,信贷数据常常用于信贷市场监控和银行监管,是银行监管统计数据的补充。因此,央行信贷大数据不仅可以帮助商业银行管理信用风险,还可以支持监管和宏观经济分析。未来的研究可以利用信贷大数据,基于预期损失模型来计算银行存款保险费率,从最基础的信贷数据单元开始计算,给保费制定提供更加及时、准确的决策支持。
(三)进行精细化的金融监管
技术进步加上日益复杂的市场,会使得金融监管机构的工作变得艰难复杂,但大数据技术的发展提供了化解之道,让金融市场维持良性运转成为可能。如金融监管机构正利用计算和“机器学习”算法的最新进展,扫描金融市场信息和公司财报,从中找出欺诈或市场滥用行为的蛛丝马迹。这些基于大数据分析技术的新型监管工具是金融交易欺诈侦查的未来,有越多的数据积累,其功能就将越强大。美国证交会几年前就推出了一个被称为“机械战警(Robocop)”的计算机程序(学名“会计质量模型”),用证交会的金融数据库检查企业利润报告,从中搜寻可能隐藏的异常行为——激进的会计手法或赤裸裸的欺诈。“机械战警”的具体情况、手法,透露给外界的信息甚少,但其基本思路是:通过大数据分析,发现多个可能暗示着潜在会计问题的重要指标。
(四)观测产业结构调整的新角度
金融大数据的深入挖掘还可以反映宏观经济变化的规律。例如,可以通过信贷大数据来观测产业结构的调整。截至2015年底,2146万户企业及其他组织被收录进企业征信系统,有596万户拥有信贷记录,该系统累计提供信用报告查询服务6.1亿次。该系统数据有三大特点:
一、全面,数据采集覆盖了国内绝大部分金融机构;
二、真实,所采集数据来自金融机构实际发生的每笔信贷业务,统计结果得自每笔业务数据汇总相加,数据可追溯从而可还原每笔明细;
三、时间跨度长,企业征信系统始自银行信贷登记咨询系统,2005年起提供对外服务,已运行了十年有余,意味着系统收集的数据超过十年,因此,对于分析国内企业的行业行为和行业情况很有价值。例如可以将这些账户级的信贷数据,逐层整合成企业级和行业级,利用大数据挖掘、分析,从信贷市场角度剖析产业结构的变化。
蓝皮书指出,金融大数据分析可以成为宏观金融决策和监管的有力工具,可以在市场化金融发展的过程中发挥重要的作用。与微观金融大数据的应用方面很多金融科技公司没有足够的金融大数据的情况不同,国内的金融大数据都掌握在政府和监管部门的手中,金融大数据的宏观应用有着良好的数据条件,更容易见到成效。
文章来源:皮书说,文章内容摘自《2017中国大数据应用发展报告》