- docker镜像报错ERROR: failed to solve: DeadlineExceeded:
柠檬编程工作室
Dockerdockereureka容器
--------------------1|#基于NVIDIACUDA镜像,确保GPU支持2|>>>FROMnvidia/cuda:12.6.2-cudnn-devel-ubuntu20.043|4|#设置工作目录--------------------ERROR:failedtosolve:DeadlineExceeded:DeadlineExceeded:DeadlineExceeded:nv
- GPT4All:免费使用本地运行无需GPU的基于C++的GPT模型和UI: A free-to-use, locally running, privacy-aware chatbot. No GPU
AI天才研究院
ChatGPT大数据AI人工智能LLM大模型落地实战指南gpt人工智能语言模型自然语言处理编程实践开发语言c++
目录GPT4All:https://github.co:m/nomic-ai/gpt4allGPT4AllChatUIGPT4All聊天用户界面效果测试问题:HowtowriteamultipleThreadcodeInJava?输出:GPT4All如何运作RunningLLMsonCPU在CPU上运行LLMSideloadinganyggMLmodel加载任何ggML模型GPT4ALL:目前已经
- ssh创建密钥ansible批量分发
liujiangxu
linuxsshlinux
ssh-keygen命令用于为“ssh”生成、管理和转换认证密钥,它支持RSA和DSA两种认证密钥SSH密钥默认保留在~/.ssh目录中id_rsa:私钥文件id_rsa.pub:公钥文件known_hosts:ssh访问不同的主机会将公钥记录到此文件,每次访问会核对密钥创建ssh密钥[root@ceshi-128~]#ssh-keygen-trsaGeneratingpublic/private
- Transformer架构和Transformers 库和Hugging Face
大哥喝阔落
transformer架构深度学习
Transformer架构和HuggingFace之间的关系非常紧密,HuggingFace是推动Transformer架构普及和应用的重要力量。以下是两者的关系及其具体联系:1.Transformer架构背景:Transformer是由Google在2017年提出的革命性架构,基于自注意力机制(Self-Attention),解决了传统RNN和CNN在处理长序列数据时的局限性。特点:并行计算能力
- Nvidia-container-toolkit 安装
NathanWu7
深度学习docker驱动开发linuxubuntu神经网络计算机视觉
Nvidia-container-toolkit安装在安装了docker后,如果你的容器需要使用GPU运行一些软件,那么就需要安装nvidia的一些支持库。其中,一些博客中提到你需要安装nvidia-docker(包括nvidia-container-toolkit等一系列),这时你可以查看你需要运行的镜像的需求,一些镜像仅仅需要nvidia-container-toolkit就可以在容器中使用g
- 实验踩坑 flash_attn_2_cuda undifiend symol
崩溃李
linux
报错RuntimeError:Failedtoimporttransformers.models.llama.modeling_llamabecauseofthefollowingerror(lookuptoseeitstraceback):…/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.s
- 【常用bsub指令介绍】使用bsub命令提交作业、开启交互式窗口,在集群服务器上用pdb进行代码调试
凌漪_
集群服务器服务器gpu算力bug
目录1.LSF作业调度系统和服务器集群介绍2.bsub运行作业的两种方式2.1bsub直接提交作业2.2bsub开启交互式窗口3.使用pdb进行代码调试4.更多bsub指令分享1.LSF作业调度系统和服务器集群介绍在一个服务器集群中,有很多的人要使用,却只有很少的GPU。LSF作业调度系统则是对每个用户提交的作业和需要使用的GPU进行调度。一般使用bsub命令来将待运行的作业提交到集群上。用bsu
- LLaVA微调debug:ImportError: xxx/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol:
同屿Firmirin
大模型debug笔记linux运维服务器深度学习语言模型
完整报错信息:ImportError:/home/linjl/anaconda3/envs/sd/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so:undefinedsymbol:_ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_s
- 【ubuntu 连接显示器无法显示】可以通过 ssh 连接 ubuntu 服务器正常使用,但服务器连接显示器没有输出
多恩Stone
服务器ubuntu计算机外设
背景ubuntu服务器通过显示器进行关机,断开电源重新接上电源再重启时,服务器连接显示器不再有输出。CPU为AMDRyzen75800X8-CoreProcessor,并没有显示,只能通过NVDIAGPU来显示。但是通过nvidia-smi,nvitop的输出,以及跑模型时的GPU状态都正常解决方案-重装NVIDIA驱动以下是重装NVIDIA驱动的完整步骤:首先删除现有的NVIDIA驱动:sudo
- 从Nvidia切换到华为云昇腾芯片的入门技巧
sunrise_ccx
华为云人工智能
Nvidia太贵,尝试使用国产的芯片做AI。等价命令Nvidia昇腾说明nvidia-sminpu-smiinfo查看机器上显卡信息npu-smiinfo-tusages-i查看显卡使用率CUDA_VISIBLE_DEVICESASCEND_RT_VISIBLE_DEVICES指定要使用的显卡【未完待续】
- RTX 4090D和A10和T4显卡差别、价格对比
张3蜂
软件安装部署开源神经网络人工智能深度学习机器学习
RTX4090D、NVIDIAA10和NVIDIAT4三款显卡在设计用途、性能、功耗、价格等方面都有显著差异,以下是它们的主要区别:1.设计用途:RTX4090D:面向高端消费者市场,主要用于游戏、内容创作和3D渲染,适合需要高图形性能的用户,如游戏玩家和内容创作者。NVIDIAA10:专为数据中心和企业应用设计,优化了AI推理、深度学习、虚拟桌面基础设施(VDI)以及多实例GPU(多用户共享显卡
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- Python&aconda系列:CUDA+Anaconda的安装以及 Conda实用命令
坦笑&&life
#pythonpythonconda开发语言
这里写目录标题一.深度学习环境配置:CUDA+Anaconda的安装3.1.1CUDA简介3.1.2查看电脑显卡型号是否支持CUDA的安装3.1.3查看电脑显卡的驱动版本3.1.4根据显卡驱动版本下载支持的CUDA版本3.1.5检查CUDA是否安装成功3.1.6安装Anaconda3.1.7检查Anaconda是否安装成功3.1.8配置Anaconda的安装包下载源二.Conda实用命令conda
- JavaScript系列(46)-- WebGL图形编程详解
ᅟᅠ 一进制
JavaScriptjavascriptwebgl开发语言
JavaScriptWebGL图形编程详解今天,让我们深入探讨JavaScript的WebGL图形编程。WebGL是一种基于OpenGLES的JavaScriptAPI,它允许我们在浏览器中渲染高性能的2D和3D图形。WebGL基础概念小知识:WebGL直接与GPU通信,使用GLSL着色器语言编写顶点和片段着色器。它提供了底层的图形API,让我们能够充分利用硬件加速进行图形渲染。基本实现//1.W
- wgcloud是如何监测GPU的
运维
实际上WGCLOUD具备监测GPU指标数据的能力,这个工作是由agent来完成的agent默认可以自己采集GPU使用率,配置文件里有指令,当然我们可以修改这个指令,改成我们自己想要的数据,也可以是脚本,非常灵活如下图采集后在页面展示效果如下图
- 【TVM 教程】线性和递归核
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:TianqiChen下面介绍如何在TVM中进行递归计算(神经网络中的典型模式)。from__future__importabsolute_import,print_functionimporttvmimporttvm.testing
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- 对话小羊驼vicuna
Always_Shine
大模型人工智能深度学习大模型自然语言处理
文章目录1.gpu租用2.公网网盘存储实例/数据3.登录实例4.预训练模型下载5.llama、alpaca、vicuna的前世今生6.对话Vicuna(1)llama-2-7b-hf(2)vicuna-7b-delta-v0(3)vicuna-7b-v0(4)执行推理1.gpu租用阿里云(AlibabaCloud)https://www.aliyun.com腾讯云(TencentCloud)htt
- 【安装cudnn】
Eternal-Student
linuxlinux
官网下载并安装如果打算使用深度学习框架,如TensorFlow或PyTorch,并且需要GPU加速,可能还需要安装NVIDIA的cuDNN库,它是一个GPU加速的深度神经网络库。officialweb:https://developer.nvidia.com/cudnn下载具体:cuDNN9.5.0Downloads历史版本下载:https://developer.nvidia.com/rdp/c
- Tesla V100驱动安装
郭宝才
linux服务器运维
确认操作系统kernel版本,参考链接:https://docs.nvidia.com/cuda/archive/12.2.0/cuda-installation-guide-linux/index.html安装依赖yuminstall-ygccgcc-c++rdma-coredkmselfutils-libelf-develntpyuminstall-ykernel-devel-$(uname-
- 显卡各种参数
iteye_17699
显卡各种参数2011年04月10日常见的显卡参数分为以下三部分:一、显示核心(芯片厂商、代号、型号、架构、频率、象素渲染管线、顶点着色引擎数、3DAPI、RAMDAC频率及支持MAX分辨率等)。二、显存颗粒(类型、封装类型、位宽、容量、速度、频率)三、PCB板(PCB层数、接口、供电位、散热器)一、显示核心显示核心就是所说的GPU,它在显卡中的作用,就像电脑整机中CPU的一样,GPU主要负责处理视
- 《剖析Transformer架构:自然语言处理飞跃的幕后英雄》
人工智能深度学习
在人工智能的迅猛发展进程中,自然语言处理(NLP)领域取得了令人瞩目的突破,而Transformer架构无疑是这场变革的核心驱动力。自从2017年在论文《AttentionIsAllYouNeed》中被提出,Transformer便在NLP领域引发了一场革命,彻底改变了模型处理和理解人类语言的方式。打破传统枷锁,开创并行计算新时代在Transformer出现之前,循环神经网络(RNN)及其变体,如
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 大模型项目落地时,该如何估算模型所需GPU算力资源
kcarly
大模型知识乱炖认识系列gpu算力深度学习自然语言处理AIGC
近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。不喜欢过程的可以直接跳到HF上提供的模型计算器要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。大模型的规模、参数的理解模型参数单位我们的项目中客户之前测试过Qwen1.5-110B的模型,效果还比较满意。(Qwen还是国产模型中比较稳定的也是很多项目的首选)模型中
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 运行虚幻引擎UE设置Visual Studio
yblackd
虚幻visualstudioc++
运行虚幻引擎UE设置VisualStudio1.枚举转换为字符串2.修改解决方案配置下拉框宽度3.调试较慢4.如何修复GPU驱动程序崩溃1.枚举转换为字符串-Desc:从静态Uenum调用GetNameStringByValue并为其提供你要获取其名称的值,可以将枚举转换为字符串。初始化Uenum时使用的StaticEnum与传入其数值的枚举,两者的类型必须相同。EMyEnum::TypeMyVa
- 使用Python实现并行计算算法:效率提升的利器
Echo_Wish
Python进阶python算法开发语言
在处理大规模数据和计算密集型任务时,单线程的处理方式往往显得力不从心。并行计算作为一种提升计算效率的重要手段,能够充分利用多核处理器的优势,加速任务的完成。Python作为一种灵活且功能强大的编程语言,提供了丰富的并行计算工具。本文将详细介绍如何使用Python实现并行计算算法,并通过具体代码示例展示其实现过程。项目概述本项目旨在通过Python实现一个并行计算算法,展示如何利用Python的多线
- python做并行计算_python做并行计算可以吗
角动量不守恒
python做并行计算
python可以做并行计算,下面是相关介绍:一、概览ParallelPython是一个python模块,提供在SMP(具有多个处理器或多核的系统)和集群(通过网络连接的计算机)上并行执行python代码的机制。它轻巧,易于安装和与其他python软件集成。ParallelPython是一个用纯Python编写的开源和跨平台模块。二、特性在SMP和集群上并行执行python代码易于理解和实现基于Jo
- python并行计算
weixin_30894389
0.基础并行/发:multiprocessing/threading1.concurrent2.并发:asynico3.Ipython下的并行计算:使用ipyparallel库的IPython提供了前所未有的能力,将科学Python的探索能力与几乎即时访问多个计算核心相结合。系统可以直观地与本地或网络的计算节点集群进行交互,而不管集群的实现方式如何。这种易于交互使用帮助IPython和Python
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo