go| 感受并发编程的乐趣 后篇

date: 2018-2-22 22:12:29
title: go| 感受并发编程的乐趣 后篇

这篇 blog 紧接我的上篇 blog - go| 感受并发编程的乐趣 前篇.

学习了 ccmouse - googl工程师 在 慕课网 - 搭建并行处理管道,感受GO语言魅力, 获益匪浅, 也想把这份编程的快乐传递给大家.

强烈推荐一下ccmouse大大的课程, 总能让我生出 Google工程师果然就是不一样 之感, 每次都能从简单的 hello world 开始, 一步步 coding 到教程的主题, 并在过程中给予充分的理由 -- 为什么要一步步变复杂. 同时也会亲身 踩坑 示范, 干货满满.

内容提要:

  • go 实现完整外部排序
  • go 实现集群版(web版)外部排序

另外, ccmouse大大关于语言学习的方法也值得借鉴:

  • 首先, 学习一下语言语法的要点
  • 立刻找一个不那么简单的项目来做, 边做边查文档/stackoverflow

go 实现完整外部排序

先来看看完整外部排序的设计图:

go| 感受并发编程的乐趣 后篇_第1张图片
图解: 外部排序

涉及到的功能大部分在上一章都有讲到, 整体流程:

  • 从文件中读取数据: 注意这里使用了 chunk 的设计, 将文件进行分块读取, 而且 chunkSize 的设计很巧妙, 同时支持 全文读取chunk读取
  • 对读取到的 chunk 的数据进行内存排序(快排)
  • 通过递归, 对排序后的 chunk 进行二路归并
  • 将归并后的数据写入到文件中

从协程的角度来看待整个流程:

  • goroutine1 进行 chunk读取, 写入 channel
  • goroutine2 进行 内存排序, 排序后数据写入 channel
  • goroutine3 进行 二路归并, 归并的过程中, 数据不断写入到 channel
  • goroutine4 进行 文件写入, 将 channel 中的数据写入到文件

注意这里:

  • goroutine1-4 可能是多个协程, 可能某一时刻是同一个协程, go 底层会有任务队列(runq)进行协程调度
  • 可以通过数据流的角度来思考这个问题: 数据是怎么在 文件/channel/协程 之间进行流转的.
  • 测试很重要, 示例中就先使用了small 数据进行测试, 检查程序的正确性, 再调整到 large 数据
  • 日志很重要, 可以帮助我们获取到程序的更多信息, 比如 debug/性能调优

关于性能:

  • 并行 最终受限于 cpu 核数, 即 N 核cpu最多同时运行 N 个线程
  • 协程间的抢占会带来性能损耗, 同理还有 进程/线程 的调度
  • 协程+channel的机制方便并发编程扩展, 相对于单机内存操作自然性能要低一些
package main

import (
    "io"
    "encoding/binary"
    "os"
    "bufio"
    "sort"
    "fmt"
    "time"
)

var startTime time.Time

func main() {
    fileIn := "small.in"
    fileOut := "small.out"
    p := createPipeline(fileIn, 512, 4) // 按照cpu核数设置节点数, 减少协程间抢占带来性能损耗
    writeToFile(p, fileOut)
    printFile(fileOut, -1)

    startTime = time.Now() // 添加日志
    fileIn = "large.in"
    fileOut = "large.out"
    p = createPipeline(fileIn, 800000000, 4)
    writeToFile(p, fileOut)
    printFile(fileOut, 100)
}

func createPipeline(filename string, fileSize, chunkCount int) <-chan int {
    chunkSize := fileSize / chunkCount // fileSize/8/chunkCount = int/chunk, 这里简单处理, 设置为可以整除的参数
    sortResults := []<-chan int{}      // 传递给 mergeN() 的已排序切片
    for i := 0; i < chunkCount; i++ {
        file, err := os.Open(filename) // 为什么没有用 defer file.close() ? 因为需要在函数外去关闭掉, 比较麻烦, 这里暂时省略
        if err != nil {
            panic(err)
        }
        file.Seek(int64(i*chunkSize), 0) // 定位到每个 chunk 的起始位置
        s := readerChunk(bufio.NewReader(file), chunkSize)
        sortResults = append(sortResults, memSort(s))
    }
    return mergeN(sortResults...)
}

func writeToFile(ch <-chan int, filename string) {
    file, err := os.Create(filename)
    if err != nil {
        panic(err)
    }
    defer file.Close()
    writer := bufio.NewWriter(file)
    defer writer.Flush() // defer 是 LIFO

    for v := range ch {
        buffer := make([]byte, 8)
        binary.BigEndian.PutUint64(buffer, uint64(v))
        writer.Write(buffer)
    }
}

func printFile(filename string, count int) {
    file, err := os.Open(filename)
    if err != nil {
        panic(err)
    }
    defer file.Close()
    p := readerChunk(file, -1) // -1 的作用体现出来了, 这里就可以读取全部文件
    if count == -1 {
        for v := range p {
            fmt.Println(v)
        }
    } else {
        n := 0
        for v := range p {
            fmt.Println(v)
            n++
            if n >= count {
                break
            }
        }
    }
}

// 递归解决两两归并
func mergeN(ins ...<-chan int) <-chan int {
    if len(ins) == 1 {
        return ins[0]
    }
    m := len(ins) / 2
    // ins[0..m) + ins[m..end)
    return merge(mergeN(ins[:m]...),
        mergeN(ins[m:]...))
}

func merge(in1, in2 <-chan int) <-chan int {
    out := make(chan int, 1024) // 性能优化, 给 channel 添加 buffer, 而不是收一个就发一个
    go func() {
        // 归并的过程要处理某个通道可能没有数据的情况, 代码非常值得一读
        v1, ok1 := <-in1
        v2, ok2 := <-in2
        for ok1 || ok2 {
            if !ok2 || (ok1 && v1 <= v2) {
                out <- v1
                v1, ok1 = <-in1
            } else {
                out <- v2
                v2, ok2 = <-in2
            }
        }
        close(out)
        fmt.Println("merge done: ", time.Now().Sub(startTime))
    }()
    return out
}

// 添加 chunk 来读取文件,
func readerChunk(reader io.Reader, chunkSize int) <-chan int {
    out := make(chan int, 1024) // 性能优化, 给 channel 添加 buffer, 而不是收一个就发一个
    bytesRead := 0
    go func() {
        buffer := make([]byte, 8) // int: 64bit -> 8byte
        for {
            n, err := reader.Read(buffer)
            bytesRead += n
            if n > 0 { // 可能数据不足 8byte
                v := int(binary.BigEndian.Uint64(buffer))
                out <- v
            }
            // 使用 -1 表示不添加 chunk 大小限制
            // 使用是 >=, 读取区间是 [0, chunkSize)
            if err != nil || (chunkSize != -1 && bytesRead >= chunkSize) {
                break
            }
        }
        close(out)
    }()
    return out
}

func memSort(in <-chan int) <-chan int {
    out := make(chan int, 1024) // 性能优化, 给 channel 添加 buffer, 而不是收一个就发一个
    go func() {
        // read into memory
        a := []int{}
        for v := range in {
            a = append(a, v)
        }
        fmt.Println("read into memory: ", time.Now().Sub(startTime))
        // sort
        sort.Ints(a)
        fmt.Println("sort done: ", time.Now().Sub(startTime))
        // output
        for _, v := range a {
            out <- v
        }
        close(out)
    }()
    return out
}

go 实现集群版(web版)外部排序

网络版的设计:

go| 感受并发编程的乐趣 后篇_第2张图片
图解: 网络版的修改

网络版只是在完整外排序的版本上, 新增了从网络读写数据, 并相应修改 pipeline 即可

package main

import (
    "net"
    "bufio"
    "encoding/binary"
    "os"
    "strconv"
    "time"
    "fmt"
    "sort"
    "io"
)

var startTime time.Time

func main() {
    startTime = time.Now()

    // 测试 net server
    //netPipeline("small.in", 512, 4) // 按照cpu核数设置节点数, 减少协程间抢占带来性能损耗
    //time.Sleep(time.Hour)

    // 测试 small
    p := netPipeline("small.in", 512, 4)
    writeToFile(p, "small.out")
    printFile("small.out", -1)

    // 测试 large
    //p := netPipeline("small.in", 512, 4)
    //writeToFile(p, "small.out")
    //printFile("small.out", -1)
}

func netPipeline(filename string, fileSize, chunkCount int) <-chan int {
    chunkSize := fileSize / chunkCount // fileSize/8/chunkCount = int/chunk, 这里简单处理, 设置为可以整除的参数
    sortAddr := []string{}
    for i := 0; i < chunkCount; i++ {
        file, err := os.Open(filename) // 为什么没有用 defer file.close() ? 因为需要在函数外去关闭掉, 比较麻烦, 这里暂时省略
        if err != nil {
            panic(err)
        }
        file.Seek(int64(i*chunkSize), 0) // 定位到每个 chunk 的起始位置
        s := readerChunk(bufio.NewReader(file), chunkSize)

        addr := ":" + strconv.Itoa(7000 + i) // 设置不同端口号来设置不同的 server
        netSink(addr, memSort(s)) // 注意 pipeline 的设计思路是建立执行流程, 真正开始执行在 pipeline 创建之后
        sortAddr = append(sortAddr, addr)
    }

    //return nil // 测试 net server

    sortResults := []<-chan int{}
    for _,addr := range sortAddr {
        sortResults = append(sortResults, netSource(addr))
    }
    return mergeN(sortResults...)
}

func writeToFile(ch <-chan int, filename string) {
    file, err := os.Create(filename)
    if err != nil {
        panic(err)
    }
    defer file.Close()
    writer := bufio.NewWriter(file)
    defer writer.Flush() // defer 是 LIFO

    for v := range ch {
        buffer := make([]byte, 8)
        binary.BigEndian.PutUint64(buffer, uint64(v))
        writer.Write(buffer)
    }
}

func printFile(filename string, count int) {
    file, err := os.Open(filename)
    if err != nil {
        panic(err)
    }
    defer file.Close()
    p := readerChunk(file, -1) // -1 的作用体现出来了, 这里就可以读取全部文件
    if count == -1 {
        for v := range p {
            fmt.Println(v)
        }
    } else {
        n := 0
        for v := range p {
            fmt.Println(v)
            n++
            if n >= count {
                break
            }
        }
    }
}

func netSink(addr string, in <-chan int) {
    listener, err := net.Listen("tcp", addr)
    if err != nil {
        panic(err)
    }
    go func() {
        defer listener.Close()
        conn, err := listener.Accept() // 通常 accept() 要放到 for{} 中不断的接收请求, 这里只处理一次就关闭了
        if err != nil {
            panic(err)
        }
        defer conn.Close()
        writer := bufio.NewWriter(conn)
        defer writer.Flush() // 别忘了 flush buffer
        for v := range in {
            buffer := make([]byte, 8)
            binary.BigEndian.PutUint64(buffer, uint64(v))
            writer.Write(buffer)
        }
    }()
}

func netSource(addr string) <-chan int {
    out := make(chan int)
    go func() {
        conn, err := net.Dial("tcp", addr)
        if err != nil {
            panic(err)
        }
        defer conn.Close()
        r := readerChunk(bufio.NewReader(conn), -1)
        for v := range r {
            out <- v
        }
        close(out)
    }()
    return out
}

// 递归解决两两归并
func mergeN(ins ...<-chan int) <-chan int {
    if len(ins) == 1 {
        return ins[0]
    }
    m := len(ins) / 2
    // ins[0..m) + ins[m..end)
    return merge(mergeN(ins[:m]...),
        mergeN(ins[m:]...))
}

func merge(in1, in2 <-chan int) <-chan int {
    out := make(chan int, 1024)
    go func() {
        // 归并的过程要处理某个通道可能没有数据的情况, 代码非常值得一读
        v1, ok1 := <-in1
        v2, ok2 := <-in2
        for ok1 || ok2 {
            if !ok2 || (ok1 && v1 <= v2) {
                out <- v1
                v1, ok1 = <-in1
            } else {
                out <- v2
                v2, ok2 = <-in2
            }
        }
        close(out)
        fmt.Println("merge done: ", time.Now().Sub(startTime))
    }()
    return out
}

// 添加 chunk 来读取文件,
func readerChunk(reader io.Reader, chunkSize int) <-chan int {
    out := make(chan int, 1024) // 性能优化, 给 channel 添加 buffer, 而不是收一个就发一个
    bytesRead := 0
    go func() {
        buffer := make([]byte, 8) // int: 64bit -> 8byte
        for {
            n, err := reader.Read(buffer)
            bytesRead += n
            if n > 0 { // 可能数据不足 8byte
                v := int(binary.BigEndian.Uint64(buffer))
                out <- v
            }
            // 使用 -1 表示不添加 chunk 大小限制
            // 使用是 >=, 读取区间是 [0, chunkSize)
            if err != nil || (chunkSize != -1 && bytesRead >= chunkSize) {
                break
            }
        }
        close(out)
    }()
    return out
}

func memSort(in <-chan int) <-chan int {
    out := make(chan int, 1024)
    go func() {
        // read into memory
        a := []int{}
        for v := range in {
            a = append(a, v)
        }
        fmt.Println("read into memory: ", time.Now().Sub(startTime))
        // sort
        sort.Ints(a)
        fmt.Println("sort done: ", time.Now().Sub(startTime))
        // output
        for _, v := range a {
            out <- v
        }
        close(out)
    }()
    return out
}

写在最后

go 的「强制」在编程方面感觉优点大于缺点:

  • 强制代码风格: 读/写代码都轻松了不少
  • 强制类型检查: 出错时的错误提示非常友好

书写过程中, 基本根据编译器提示, 就可以把大部分 bug 清理掉.

go语言三大特色:

  • 面向接口, 比如示例中的 Reader/Writer, 从而可以轻松添加 buffer 进行性能优化
  • 函数式, go语言中函数式一等公民
  • 并发编程: go + channel

再次推荐一下 go, 给想要写 并发编程 的程序汪, 就如 ccmouse大大的教程所说:

感受并发编程的乐趣

资源推荐:

  • 首推 ccmouse大大的视频教程: 慕课网 - 搭建并行处理管道,感受GO语言魅力
  • 同时推荐看完一本书 go并发编程: 讲解并发编程相关知识和 go并发编程原理 上面非常透彻, 几个实战的项目也适合 ccmouse大大推荐的学习方式 -- 不那么简单的项目来练手

你可能感兴趣的:(go| 感受并发编程的乐趣 后篇)