标签(空格分隔): LSTM
1.构建LSTM
在tensorflow中,存在两个库函数可以构建LSTM,分别为tf.nn.rnn_cell.BasicLSTMCell和tf.contrib.rnn.BasicLSTMCell,最常使用的参数是num_units,表示的是LSTM中隐含状态的维度,state_in_tuple表示将(c,h)表示为一个元组。
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units)
2.初始化隐含状态
LSTM的输入不仅有数据输入,还有前一个时刻的状态输入,因此需要初始化输入状态
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
3.添加dropout层
可以在基本的LSTM上添加dropout层
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell,output_keep_prob=self.keep_prob)
4.多层LSTM
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num)
其中hidden_layer_num为LSTM的层数
5.完整代码
import tensorflow as tf
import numpy as np
batch_size=2
num_units=64
num_steps=10
input_dim=8
input=np.random.randn(batch_size,num_steps,input_dim)
input[1,6:]=0
x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_steps,input_dim],name='input_x')
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units)
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
outputs=[]
with tf.variable_scope('RNN'):
for i in range(num_steps):
if i > 0 :
# print(tf.get_variable_scope())
tf.get_variable_scope().reuse_variables()
output=lstm_cell(x[:,i,:],initial_state)
outputs.append(output)
with tf.Session() as sess:
init_op=tf.initialize_all_variables()
sess.run(init_op)
np.set_printoptions(threshold=np.NAN)
result=sess.run(outputs,feed_dict={x:input})
print(result)
如果觉得写for循环比较麻烦,则可以使用tf.nn.static_rnn函数,这个函数就是使用for循环实现的LSTM
但是需要注意的是该函数的参数设置
tf.nn.static_rnn(
cell,
inputs,
initial_state=None,
dtype=None,
sequence_length=None,
scope=None
)
其中cell即为LSTM,inputs的维度必须为[num_steps,batch_size,input_dim],sequence_length为batch_size个输入的长度
import tensorflow as tf
import numpy as np
batch_size=2
num_units=64
num_steps=10
input_dim=8
input=np.random.randn(batch_size,num_steps,input_dim)
input[1,6:]=0
x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_steps,input_dim],name='input_x')
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units)
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
y=tf.unstack(x,axis=1)
# x:[batch_size,num_steps,input_dim],type:placeholder
# y:[num_steps,batch_size,input_dim],type:list
output,state=tf.nn.static_rnn(lstm_cell,y,sequence_length=[10,6],initial_state=initial_state)
with tf.Session() as sess:
init_op=tf.initialize_all_variables()
sess.run(init_op)
np.set_printoptions(threshold=np.NAN)
result1,result2=(sess.run([output,state],feed_dict={x:input}))
result1=np.asarray(result1)
result2=np.asarray(result2)
print(result1)
print('*'*100)
print(result2)
还可以使用tf.nn.dynamic_rnn函数来实现
tf.nn.dynamic_rnn(
cell,
inputs,
sequence_length=None,
initial_state=None,
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
该函数的cell即为LSTM,inputs的维度是[batch_size,num_steps,input_dim]
output,state=tf.nn.dynamic_rnn(cell,x,sequence_length=[10,6],initial_state=initial_state)
6.
不论dynamic_rnn还是static_rnn,每个batch的序列长度都是一样的(不足的话自己要去padding),不同的是dynamic会根据 sequence_length 中止计算。另外一个不同是dynamic_rnn动态生成graph
但是dynamic_rnn不同的batch序列长度可以不一样,例如第一个batch长度为10,第二个batch长度为20,但是static_rnn不同的batch序列长度必须是相同的,都必须是num_steps
下面使用dynamic_rnn来实现不同batch之间的序列长度不同
import tensorflow as tf
import numpy as np
batch_size=2
num_units=64
num_steps=10
input_dim=8
input=np.random.randn(batch_size,num_steps,input_dim)
input2=np.random.randn(batch_size,num_steps*2,input_dim)
x=tf.placeholder(dtype=tf.float32,shape=[batch_size,None,input_dim],name='input') # None 表示序列长度不定
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units)
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
output,state=tf.nn.dynamic_rnn(lstm_cell,x,initial_state=initial_state)
with tf.Session() as sess:
init_op=tf.initialize_all_variables()
sess.run(init_op)
np.set_printoptions(threshold=np.NAN)
result1,result2=(sess.run([output,state],feed_dict={x:input})) # 序列长度为10 x:[batch_size,num_steps,input_dim],此时LSTM个数为10个,或者说循环10次LSTM
result1=np.asarray(result1)
result2=np.asarray(result2)
print(result1)
print('*'*100)
print(result2)
result1, result2 = (sess.run([output, state], feed_dict={x:input2})) # 序列长度为20 x:[batch_size,num_steps,input_dim],此时LSTM个数为20个,或者说循环20次LSTM
result1 = np.asarray(result1)
result2 = np.asarray(result2)
print(result1)
print('*' * 100)
print(result2)
但是static_rnn是不可以的
7.dynamic_rnn的性能和static_rnn的性能
import tensorflow as tf
import numpy as np
import time
num_step=100
input_dim=8
batch_size=2
num_unit=64
input_data=np.random.randn(batch_size,num_step,input_dim)
x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_step,input_dim])
seq_len=tf.placeholder(dtype=tf.int32,shape=[batch_size])
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_unit)
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
y=tf.unstack(x,axis=1)
output1,state1=tf.nn.static_rnn(lstm_cell,y,sequence_length=seq_len,initial_state=initial_state)
output2,state2=tf.nn.dynamic_rnn(lstm_cell,x,sequence_length=seq_len,initial_state=initial_state)
print('begin train...')
with tf.Session() as sess:
init_op=tf.initialize_all_variables()
sess.run(init_op)
for i in range(100):
sess.run([output1,state1],feed_dict={x:input_data,seq_len:[10]*batch_size})
time1=time.time()
for i in range(100):
sess.run([output1,state1],feed_dict={x:input_data,seq_len:[10]*batch_size})
time2=time.time()
print('static_rnn seq_len:10\t\t{}'.format(time2-time1))
for i in range(100):
sess.run([output1,state1],feed_dict={x:input_data,seq_len:[100]*batch_size})
time3=time.time()
print('static_rnn seq_len:100\t\t{}'.format(time3-time2))
for i in range(100):
sess.run([output2,state2],feed_dict={x:input_data,seq_len:[10]*batch_size})
time4=time.time()
print('dynamic_rnn seq_len:10\t\t{}'.format(time4-time3))
for i in range(100):
sess.run([output2,state2],feed_dict={x:input_data,seq_len:[100]*batch_size})
time5=time.time()
print('dynamic_rnn seq_len:100\t\t{}'.format(time5-time4))
result:
static_rnn seq_len:10 0.8497538566589355
static_rnn seq_len:100 1.5897266864776611
dynamic_rnn seq_len:10 0.4857025146484375
dynamic_rnn seq_len:100 2.8693313598632812
序列短的要比序列长的运行的快,dynamic_rnn比static_rnn快的原因是:dynamic_rnn运行到序列长度后自动停止,不再运行,而static_rnn必须运行完num_steps才停止
序列长度为100的实验结果和分析相反,可能是因为循环耗时间,比不上直接在100个LSTM上运行的性能