人工智能论文合集

  • 1机器学习及相关内容
      • ▌1.1 机器学习
      • ▌1.2 激活函数与损失函数
      • ▌1.3 偏差
      • ▌1.4 感知
      • ▌1.5 回归
      • ▌1.6 梯度下降
      • ▌1.7 生成学习
      • ▌1.8 支持向量机
      • ▌1.9 反向传播
      • ▌1.10 深度学习
      • ▌1.11 优化方法与降维方法
      • ▌1.12  LSTM
      • ▌1.13 CNN
      • ▌1.14 RNN
      • ▌1.15 强化学习 RL
      • ▌1.16 生成对抗网络 GANs
      • ▌1.17 多任务学习
  • 2.NLP及相关内容
      • ▌2.1 NLP
      • ▌2.2 深度学习与 NLP
      • ▌2.3 词向量
      • ▌2.4 编码-解码
  • 3.Python 及相关内容
      • ▌3.1示例
      • ▌3.2 函数与 numpy
      • ▌3.3 算法库
      • ▌3.4 TensorFlow
      • ▌3.5 Pytorch
  • 4.数学及相关内容
      • ▌4.1 机器学习中的数学
      • ▌4.2 线性代数
      • ▌4.3 概率论


1机器学习及相关内容

▌1.1 机器学习

Start Here with Machine Learning (machinelearningmastery.com)

Machine Learning is Fun! (medium.com/@ageitgey)

Rules of Machine Learning: Best Practices for ML Engineering(martin.zinkevich.org)

Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)

A Gentle Guide to Machine Learning (monkeylearn.com)

Which machine learning algorithm should I use? (sas.com)

The Machine Learning Primer (sas.com)

Machine Learning Tutorial for Beginners (kaggle.com/kanncaa1)

▌1.2 激活函数与损失函数

Sigmoid neurons (neuralnetworksanddeeplearning.com)

What is the role of the activation function in a neural network? (quora.com)

Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)

Activation functions and it’s types-Which is better? (medium.com)

Making Sense of Logarithmic Loss (exegetic.biz)

Loss Functions (Stanford CS231n)

L1 vs. L2 Loss function (rishy.github.io)

The cross-entropy cost function (neuralnetworksanddeeplearning.com)


▌1.3 偏差

Role of Bias in Neural Networks (stackoverflow.com)

Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)

What is bias in artificial neural network? (quora.com)


▌1.4 感知

Perceptrons (neuralnetworksanddeeplearning.com)

The Perception (natureofcode.com)

Single-layer Neural Networks (Perceptrons) (dcu.ie)

From Perceptrons to Deep Networks (toptal.com)


▌1.5 回归

Introduction to linear regression analysis (duke.edu)

Linear Regression (ufldl.stanford.edu)

Linear Regression (readthedocs.io)

Logistic Regression (readthedocs.io)

Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)

Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)

Softmax Regression (ufldl.stanford.edu)


▌1.6 梯度下降

Learning with gradient descent (neuralnetworksanddeeplearning.com)

Gradient Descent (iamtrask.github.io)

How to understand Gradient Descent algorithm (kdnuggets.com)

An overview of gradient descent optimization algorithms(sebastianruder.com)

Optimization: Stochastic Gradient Descent (Stanford CS231n)


▌1.7 生成学习

Generative Learning Algorithms (Stanford CS229)

A practical explanation of a Naive Bayes classifier (monkeylearn.com)


▌1.8 支持向量机

An introduction to Support Vector Machines (SVM) (monkeylearn.com)

Support Vector Machines (Stanford CS229)

Linear classification: Support Vector Machine, Softmax (Stanford 231n)


▌1.9 反向传播

Yes you should understand backprop (medium.com/@karpathy)

Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)

How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)

Backpropagation Through Time and Vanishing Gradients (wildml.com)

A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)

Backpropagation, Intuitions (Stanford CS231n)


▌1.10 深度学习

A Guide to Deep Learning by YN² (yerevann.com)

Deep Learning Papers Reading Roadmap (github.com/floodsung)

Deep Learning in a Nutshell (nikhilbuduma.com)

A Tutorial on Deep Learning (Quoc V. Le)

What is Deep Learning? (machinelearningmastery.com)

What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)

Deep Learning — The Straight Dope (gluon.mxnet.io)


▌1.11 优化方法与降维方法

Seven Techniques for Data Dimensionality Reduction (knime.org)

Principal components analysis (Stanford CS229)

Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

How to train your Deep Neural Network (rishy.github.io)


▌1.12  LSTM

A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)

Understanding LSTM Networks (colah.github.io)

Exploring LSTMs (echen.me)

Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)


▌1.13 CNN

Introducing convolutional networks (neuralnetworksanddeeplearning.com)

Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)

Conv Nets: A Modular Perspective (colah.github.io)

Understanding Convolutions (colah.github.io)


▌1.14 RNN

Recurrent Neural Networks Tutorial (wildml.com)

Attention and Augmented Recurrent Neural Networks (distill.pub)

The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)

A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)


▌1.15 强化学习 RL

Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)

A Tutorial for Reinforcement Learning (mst.edu)

Learning Reinforcement Learning (wildml.com)

Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)


▌1.16 生成对抗网络 GANs

Adversarial Machine Learning (aaai18adversarial.github.io)

What’s a Generative Adversarial Network? (nvidia.com)

Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)

An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)

Generative Adversarial Networks for Beginners (oreilly.com)


▌1.17 多任务学习

An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)


2.NLP及相关内容


▌2.1 NLP

Natural Language Processing is Fun! (medium.com/@ageitgey)

A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)

The Definitive Guide to Natural Language Processing (monkeylearn.com)

Introduction to Natural Language Processing (algorithmia.com)

Natural Language Processing Tutorial (vikparuchuri.com)

Natural Language Processing (almost) from Scratch (arxiv.org)


▌2.2 深度学习与 NLP

Deep Learning applied to NLP (arxiv.org)

Deep Learning for NLP (without Magic) (Richard Socher)

Understanding Convolutional Neural Networks for NLP (wildml.com)

Deep Learning, NLP, and Representations (colah.github.io)

Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)

Deep Learning for NLP with Pytorch (pytorich.org)


2.3 词向量

Bag of Words Meets Bags of Popcorn (kaggle.com)

On word embeddings Part I, Part II, Part III (sebastianruder.com)

The amazing power of word vectors (acolyer.org)

word2vec Parameter Learning Explained (arxiv.org)

Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)


2.4 编码-解码

Attention and Memory in Deep Learning and NLP (wildml.com)

Sequence to Sequence Models (tensorflow.org)

Sequence to Sequence Learning with Neural Networks (NIPS 2014)

Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)

How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)

tf-seq2seq (google.github.io)


3.Python 及相关内容


3.1示例

Machine Learning Crash Course (google.com)

Awesome Machine Learning (github.com/josephmisiti)

7 Steps to Mastering Machine Learning With Python (kdnuggets.com)

An example machine learning notebook (nbviewer.jupyter.org)

Machine Learning with Python (tutorialspoint.com)


How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)

Implementing a Neural Network from Scratch in Python (wildml.com)

A Neural Network in 11 lines of Python (iamtrask.github.io)

Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)

ML from Scatch (github.com/eriklindernoren)

Python Machine Learning (2nd Ed.) Code Repository (github.com/rasbt)


3.2 函数与 numpy

Scipy Lecture Notes (scipy-lectures.org)

Python Numpy Tutorial (Stanford CS231n)

An introduction to Numpy and Scipy (UCSB CHE210D)

A Crash Course in Python for Scientists (nbviewer.jupyter.org)


3.3 算法库

PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)

scikit-learn Classification Algorithms (github.com/mmmayo13)

scikit-learn Tutorials (scikit-learn.org)

Abridged scikit-learn Tutorials (github.com/mmmayo13)


3.4 TensorFlow

Tensorflow Tutorials (tensorflow.org)

Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)

TensorFlow: A primer (metaflow.fr)

RNNs in Tensorflow (wildml.com)

Implementing a CNN for Text Classification in TensorFlow (wildml.com)

How to Run Text Summarization with TensorFlow (surmenok.com)


3.5 Pytorch

PyTorch Tutorials (pytorch.org)

A Gentle Intro to PyTorch (gaurav.im)

Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

PyTorch Examples (github.com/jcjohnson)

PyTorch Tutorial (github.com/MorvanZhou)

PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)


4.数学及相关内容


4.1 机器学习中的数学

Math for Machine Learning (ucsc.edu)

Math for Machine Learning (UMIACS CMSC422)

4.2 线性代数

An Intuitive Guide to Linear Algebra (betterexplained.com)

A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)

Understanding the Cross Product (betterexplained.com)

Understanding the Dot Product (betterexplained.com)

Linear Algebra for Machine Learning (U. of Buffalo CSE574)

Linear algebra cheat sheet for deep learning (medium.com)

Linear Algebra Review and Reference (Stanford CS229)


4.3 概率论

Understanding Bayes Theorem With Ratios (betterexplained.com)

Review of Probability Theory (Stanford CS229)

Probability Theory Review for Machine Learning (Stanford CS229)

How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)

Vector Calculus: Understanding the Gradient (betterexplained.com)

Differential Calculus (Stanford CS224n)

Calculus Overview (readthedocs.io)


原文链接:https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc

你可能感兴趣的:(机器学习,人工智能,统计学习方法,深度学习,自然语言处理)