一、程序加载
正向开发中,我们平时编写的程序的入口函数都是main.m里面的main函数,所以很多时候都会以为程序就是从这开始执行。其实main函数之前就有一系列的事情发生,比如+load
方法与constructor构造函数就是在main函数之前执行的。
二、dyld、dyld_shared_cache简介
程序启动运行时会依赖很多系统动态库,而系统动态库会通过dyld(动态加载器)(
/usr/lib/dyld
)加载到内存中,最开始系统内核读取程序可执行文件的Header段信息做一些准备工作,之后就会将工作交给dyld。由于不止一个程序需要使用系统动态库,所以不可能在每个程序加载时都去加载所有的系统动态库,为了优化程序启动速度和利用动态库缓存,苹果从iOS3.1之后,将所有系统库(私有与公有)编译成一个大的缓存文件,这就是dyld_shared_cache,该缓存文件存在iOS系统下的/System/Library/Caches/com.apple.dyld/
目录下
三、dyld加载流程
(一)、从新建Demo工程简单入手
创建一个新的iOS App工程,新建一个自定义类,并且在+load
方法内下断点,同时也在main方法内下断点,运行工程,接着查看函数调用栈。
从左侧函数调用栈可以看到首先调用的是dyld的
__dyld_start
函数,我们查看 dyld源码(我是对比着433.5版本的dyld2以及635.2版本的dyld3看),搜索
__dyld_start
,可以在dyldStartup.s文件内找到
__dyld_start
的汇编实现。
往下查看,
__dyld_start
内部调用了
dyldbootstrap::start()
方法,然后再调用dyld的main函数
转到dyld.cpp查看dyld的main函数,注意此main函数不是我们程序的main,而是dyld这个可执行文件的入口main函数,我们全局搜索_main
,找到函数实现,如下:
函数注释部分:dyld的入口,系统内核(XNU)初始化好寄存器后会加载dyld并且跳到
__dyld_start
函数并且调用该(main)函数
main函数内部大体做了以下操作:
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
......
uintptr_t result = 0;
//保存传入的可执行文件的头部(是一个struct macho_header结构体),后面根据头部访问信息
sMainExecutableMachHeader = mainExecutableMH;
......
//根据可执行文件头部,参数等设置上下文信息
setContext(mainExecutableMH, argc, argv, envp, apple);
// Pickup the pointer to the exec path.
//获取可执行文件路径
sExecPath = _simple_getenv(apple, "executable_path");
// Remove interim apple[0] transition code from dyld
if (!sExecPath) sExecPath = apple[0];
//将相对路径转换成绝对路径
if ( sExecPath[0] != '/' ) {
// have relative path, use cwd to make absolute
char cwdbuff[MAXPATHLEN];
if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
// maybe use static buffer to avoid calling malloc so early...
char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
strcpy(s, cwdbuff);
strcat(s, "/");
strcat(s, sExecPath);
sExecPath = s;
}
}
// Remember short name of process for later logging
//获取可执行文件的名字
sExecShortName = ::strrchr(sExecPath, '/');
if ( sExecShortName != NULL )
++sExecShortName;
else
sExecShortName = sExecPath;
//配置进程是否受限
configureProcessRestrictions(mainExecutableMH);
......
{
//检查设置环境变量
checkEnvironmentVariables(envp);
//如果DYLD_FALLBACK为nil,将其设置为默认值
defaultUninitializedFallbackPaths(envp);
}
......
//如果设置了DYLD_PRINT_OPTS环境变量,则打印参数
if ( sEnv.DYLD_PRINT_OPTS )
printOptions(argv);
//如果设置了DYLD_PRINT_ENV环境变量,则打印环境变量
if ( sEnv.DYLD_PRINT_ENV )
printEnvironmentVariables(envp);
//根据Mach-O头部获取当前运行架构信息
getHostInfo(mainExecutableMH, mainExecutableSlide);
// load shared cache
//检查共享缓存是否开启,iOS中必须开启
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
#if TARGET_IPHONE_SIMULATOR
// until is fixed
gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
//
#endif
if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
//检查共享缓存是否映射到了共享区域
mapSharedCache();
}
......
// instantiate ImageLoader for main executable
//加载可执行文件并生成一个ImageLoader实例对象
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
gLinkContext.mainExecutable = sMainExecutable;
gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);
......
// Now that shared cache is loaded, setup an versioned dylib overrides
#if SUPPORT_VERSIONED_PATHS
//检查库的版本是否有更新,有则覆盖原有的
checkVersionedPaths();
#endif
......
// load any inserted libraries
//加载所有DYLD_INSERT_LIBRARIES指定的库
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
// record count of inserted libraries so that a flat search will look at
// inserted libraries, then main, then others.
sInsertedDylibCount = sAllImages.size()-1;
// link main executable
//链接主程序
gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
if ( mainExcutableAlreadyRebased ) {
// previous link() on main executable has already adjusted its internal pointers for ASLR
// work around that by rebasing by inverse amount
sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
}
#endif
link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
sMainExecutable->setNeverUnloadRecursive();
if ( sMainExecutable->forceFlat() ) {
gLinkContext.bindFlat = true;
gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
}
// link any inserted libraries
//链接所有插入的动态库
// do this after linking main executable so that any dylibs pulled in by inserted
// dylibs (e.g. libSystem) will not be in front of dylibs the program uses
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
image->setNeverUnloadRecursive();
}
// only INSERTED libraries can interpose
// register interposing info after all inserted libraries are bound so chaining works
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
//注册符号插入
image->registerInterposing(gLinkContext);
}
}
// dyld should support interposition even without DYLD_INSERT_LIBRARIES
for (long i=sInsertedDylibCount+1; i < sAllImages.size(); ++i) {
ImageLoader* image = sAllImages[i];
if ( image->inSharedCache() )
continue;
image->registerInterposing(gLinkContext);
}
#if SUPPORT_ACCELERATE_TABLES
if ( (sAllCacheImagesProxy != NULL) && ImageLoader::haveInterposingTuples() ) {
// Accelerator tables cannot be used with implicit interposing, so relaunch with accelerator tables disabled
ImageLoader::clearInterposingTuples();
// unmap all loaded dylibs (but not main executable)
for (long i=1; i < sAllImages.size(); ++i) {
ImageLoader* image = sAllImages[i];
if ( image == sMainExecutable )
continue;
if ( image == sAllCacheImagesProxy )
continue;
image->setCanUnload();
ImageLoader::deleteImage(image);
}
// note: we don't need to worry about inserted images because if DYLD_INSERT_LIBRARIES was set we would not be using the accelerator table
sAllImages.clear();
sImageRoots.clear();
sImageFilesNeedingTermination.clear();
sImageFilesNeedingDOFUnregistration.clear();
sAddImageCallbacks.clear();
sRemoveImageCallbacks.clear();
sAddLoadImageCallbacks.clear();
sDisableAcceleratorTables = true;
sAllCacheImagesProxy = NULL;
sMappedRangesStart = NULL;
mainExcutableAlreadyRebased = true;
gLinkContext.linkingMainExecutable = false;
resetAllImages();
goto reloadAllImages;
}
#endif
// apply interposing to initial set of images
for(int i=0; i < sImageRoots.size(); ++i) {
//应用符号插入
sImageRoots[i]->applyInterposing(gLinkContext);
}
ImageLoader::applyInterposingToDyldCache(gLinkContext);
gLinkContext.linkingMainExecutable = false;
// Bind and notify for the main executable now that interposing has been registered
uint64_t bindMainExecutableStartTime = mach_absolute_time();
sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
uint64_t bindMainExecutableEndTime = mach_absolute_time();
ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
gLinkContext.notifyBatch(dyld_image_state_bound, false);
// Bind and notify for the inserted images now interposing has been registered
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
}
}
// do weak binding only after all inserted images linked
//弱符号绑定
sMainExecutable->weakBind(gLinkContext);
......
#if SUPPORT_OLD_CRT_INITIALIZATION
// Old way is to run initializers via a callback from crt1.o
if ( ! gRunInitializersOldWay )
initializeMainExecutable();
#else
// run all initializers
//执行初始化方法
initializeMainExecutable();
#endif
// notify any montoring proccesses that this process is about to enter main()
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
notifyMonitoringDyldMain();
// find entry point for main executable
//寻找目标可执行文件入口并执行
result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
if ( result != 0 ) {
// main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
*startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
else
halt("libdyld.dylib support not present for LC_MAIN");
}
else {
// main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
*startGlue = 0;
}
#if __has_feature(ptrauth_calls)
// start() calls the result pointer as a function pointer so we need to sign it.
result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
}
catch(const char* message) {
syncAllImages();
halt(message);
}
catch(...) {
dyld::log("dyld: launch failed\n");
}
CRSetCrashLogMessage("dyld2 mode");
if (sSkipMain) {
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
result = (uintptr_t)&fake_main;
*startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
}
return result;
}
将dyld的_main函数内部流程拆分,大概有以下:
- 1. 设置上下文信息,配置进程是否受限
- 2. 配置环境变量,获取当前运行架构
- 3. 检查共享缓存是否映射到共享区域
- 4. 加载可执行文件,生成ImageLoader实例对象
- 5. 加载所有插入的库
- 6. 链接主程序
- 7. 链接所有插入的库,执行符号替换
- 8. 执行初始化方法
- 9. 寻找主程序入口
(二)、分步认识加载流程
1.设置上下文信息,配置进程是否受限
调用setContext
,传入Mach-O头部,以及_main的一些参数,设置上下文。接着调用configureProcessRestrictions
,跟进查看,主要看iOS平台的一段,将EncVarMode
环境变量类型的Mode设置为不同(默认是envNone(受限模式,忽略环境变量)),当设置了get_task_allow
权限以及开发内核时会将sEnvMode设置为envAll
,但只要将get_task_allow
设置了uid或gid,sEnvMode就会设置为受限模式。dyld3下该段的实现代码有了变化,暂时没有具体学习研究。
uint32_t flags;
#if TARGET_IPHONE_SIMULATOR
sEnvMode = envAll;
gLinkContext.requireCodeSignature = true;
#elif __IPHONE_OS_VERSION_MIN_REQUIRED
sEnvMode = envNone;
gLinkContext.requireCodeSignature = true;
if ( csops(0, CS_OPS_STATUS, &flags, sizeof(flags)) != -1 ) {
if ( flags & CS_ENFORCEMENT ) {
if ( flags & CS_GET_TASK_ALLOW ) {
// Xcode built app for Debug allowed to use DYLD_* variables
sEnvMode = envAll;
}
else {
// Development kernel can use DYLD_PRINT_* variables on any FairPlay encrypted app
uint32_t secureValue = 0;
size_t secureValueSize = sizeof(secureValue);
if ( (sysctlbyname("kern.secure_kernel", &secureValue, &secureValueSize, NULL, 0) == 0) && (secureValue == 0) && isFairPlayEncrypted(mainExecutableMH) ) {
sEnvMode = envPrintOnly;
}
}
}
else {
// Development kernel can run unsigned code
sEnvMode = envAll;
gLinkContext.requireCodeSignature = false;
}
}
if ( issetugid() ) {
sEnvMode = envNone;
}
2.配置环境变量,获取当前运行架构
调用checkEnvironmentVariables
,如果allowEnvVarsPath
与allowEnvVarsPrint
为空,直接跳过,否则调用processDyldEnvironmentVariable
处理并设置环境变量,如下:
static void checkEnvironmentVariables(const char* envp[])
{
if ( !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsPrint )
return;
const char** p;
for(p = envp; *p != NULL; p++) {
const char* keyEqualsValue = *p;
if ( strncmp(keyEqualsValue, "DYLD_", 5) == 0 ) {
const char* equals = strchr(keyEqualsValue, '=');
if ( equals != NULL ) {
strlcat(sLoadingCrashMessage, "\n", sizeof(sLoadingCrashMessage));
strlcat(sLoadingCrashMessage, keyEqualsValue, sizeof(sLoadingCrashMessage));
const char* value = &equals[1];
const size_t keyLen = equals-keyEqualsValue;
char key[keyLen+1];
strncpy(key, keyEqualsValue, keyLen);
key[keyLen] = '\0';
if ( (strncmp(key, "DYLD_PRINT_", 11) == 0) && !gLinkContext.allowEnvVarsPrint )
continue;
processDyldEnvironmentVariable(key, value, NULL);
}
}
else if ( strncmp(keyEqualsValue, "LD_LIBRARY_PATH=", 16) == 0 ) {
const char* path = &keyEqualsValue[16];
sEnv.LD_LIBRARY_PATH = parseColonList(path, NULL);
}
}
#if SUPPORT_LC_DYLD_ENVIRONMENT
checkLoadCommandEnvironmentVariables();
#endif // SUPPORT_LC_DYLD_ENVIRONMENT
#if SUPPORT_ROOT_PATH
// DYLD_IMAGE_SUFFIX and DYLD_ROOT_PATH cannot be used together
if ( (gLinkContext.imageSuffix != NULL && *gLinkContext.imageSuffix != NULL) && (gLinkContext.rootPaths != NULL) ) {
dyld::warn("Ignoring DYLD_IMAGE_SUFFIX because DYLD_ROOT_PATH is used.\n");
gLinkContext.imageSuffix = NULL; // this leaks allocations from parseColonList
}
#endif
}
返回_main函数,往下一点查看,该段主要做的是,如果设置了这两个环境变量参数,则在App启动时,打印相关参数、环境变量信息。
//如果设置了DYLD_PRINT_OPTS环境变量,则打印参数
if ( sEnv.DYLD_PRINT_OPTS )
printOptions(argv);
//如果设置了DYLD_PRINT_ENV环境变量,则打印环境变量
if ( sEnv.DYLD_PRINT_ENV )
printEnvironmentVariables(envp);
我在前面的Demo工程下加入这两个参数,运行打印了许多信息,其中包括沙盒目录,DYLD_INSERT_LIBRARIES、进程状态空间等,结果如下:
继续返回_main函数,查看getHostInfo
调用,这步主要是从Mach-O头部获取当前运行架构的信息,如下:
static void getHostInfo(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide)
{
#if CPU_SUBTYPES_SUPPORTED
#if __ARM_ARCH_7K__
sHostCPU = CPU_TYPE_ARM;
sHostCPUsubtype = CPU_SUBTYPE_ARM_V7K;
#elif __ARM_ARCH_7A__
sHostCPU = CPU_TYPE_ARM;
sHostCPUsubtype = CPU_SUBTYPE_ARM_V7;
#elif __ARM_ARCH_6K__
sHostCPU = CPU_TYPE_ARM;
sHostCPUsubtype = CPU_SUBTYPE_ARM_V6;
#elif __ARM_ARCH_7F__
sHostCPU = CPU_TYPE_ARM;
sHostCPUsubtype = CPU_SUBTYPE_ARM_V7F;
#elif __ARM_ARCH_7S__
sHostCPU = CPU_TYPE_ARM;
sHostCPUsubtype = CPU_SUBTYPE_ARM_V7S;
#elif __ARM64_ARCH_8_32__
sHostCPU = CPU_TYPE_ARM64_32;
sHostCPUsubtype = CPU_SUBTYPE_ARM64_32_V8;
#elif __arm64e__
sHostCPU = CPU_TYPE_ARM64;
sHostCPUsubtype = CPU_SUBTYPE_ARM64_E;
#elif __arm64__
sHostCPU = CPU_TYPE_ARM64;
sHostCPUsubtype = CPU_SUBTYPE_ARM64_V8;
#else
struct host_basic_info info;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
mach_port_t hostPort = mach_host_self();
kern_return_t result = host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&info, &count);
if ( result != KERN_SUCCESS )
throw "host_info() failed";
sHostCPU = info.cpu_type;
sHostCPUsubtype = info.cpu_subtype;
mach_port_deallocate(mach_task_self(), hostPort);
#if __x86_64__
// host_info returns CPU_TYPE_I386 even for x86_64. Override that here so that
// we don't need to mask the cpu type later.
sHostCPU = CPU_TYPE_X86_64;
#if !TARGET_IPHONE_SIMULATOR
sHaswell = (sHostCPUsubtype == CPU_SUBTYPE_X86_64_H);
// x86_64h: Fall back to the x86_64 slice if an app requires GC.
if ( sHaswell ) {
if ( isGCProgram(mainExecutableMH, mainExecutableSlide) ) {
// When running a GC program on a haswell machine, don't use and 'h slices
sHostCPUsubtype = CPU_SUBTYPE_X86_64_ALL;
sHaswell = false;
gLinkContext.sharedRegionMode = ImageLoader::kDontUseSharedRegion;
}
}
#endif
#endif
#endif
#endif
}
3. 检查共享缓存是否映射到共享区域
首先调用checkSharedRegionDisable
检查是否开启共享缓存,在iOS中是必须开启的,接着调用mapSharedCache
将共享缓存映射到共享区域,在dyld2源码中mapSharedCache
内部先通过shared_region_check_np
检查缓存是否已经映射,是则更新sharedCacheSlide和sharedCacheUUID,否则调用openSharedCacheFile
打开共享缓存文件(/System/Library/Caches/com.apple.dyld/dyld_shared_cache_x
),最后使用shared_region_map_and_slide_up
完成映射,代码很多,就不贴出了。在dyld3中该mapSharedCache
变得很简短,应该是做了优化。
4. 加载可执行文件,生成ImageLoader实例对象
跳到ImageLoader定义处ImageLoader.h,从它的注释可以看出,它是一个抽象基类,专门用于辅助加载特定可执行文件格式的类,对于程序中需要的依赖库、插入库,会创建一个对应的image对象,对这些image进行链接,调用各image的初始化方法等等,包括对runtime的初始化。
instantiateFromLoadedImage
实例化一个ImageLoader对象,内部先判断文件架构是否与当前设备架构兼容,接着调用
ImageLoaderMachO::instantiateMainExecutable
加载文件生成实例,不断添加image。
ImageLoaderMachO::instantiateMainExecutable
内部会判断Mach-O是否压缩来使用不同的ImageLoader子类进行初始化。
5. 加载所有插入的库
从上一步Imageloader加载的代码接着往下查看,会发现
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
该段的作用是遍历DYLD_INSERT_LIBRARIES环境变量,调用loadInsertedDylib
加载,通过该环境变量我们可以注入自定义的一些动态库代码,loadInsertedDylib
内部会从DYLD_ROOT_PATH、LD_LIBRARY_PATH、DYLD_FRAMEWORK_PATH等路径查找dylib并且检查代码签名,无效则直接抛出异常。
6. 链接主程序
内核调用ImageLoader::link
函数,内部调用recursiveLoadLibraries
递归加载动态库,加载动态库后,对依赖库进行排序,被依赖的排序在前面,接着调用recursiveRebase
,rebase就是针对 “mach-o在加载到内存中不是固定的首地址” (苹果的ASLR地址空间随机化)这一现象做数据修正的过程。接下来调用recursiveBindWithAccounting
递归绑定符号表。绑定就是将这个二进制调用的外部符号进行绑定的过程。 比如我们objc代码中需要使用到NSObject, 即符号OBJC_CLASS$_NSObject,但是这个符号又不在我们的二进制中,在系统库 Foundation.framework中,因此就需要binding这个操作将对应关系绑定到一起。lazyBinding就是在加载动态库的时候不会立即binding, 当第一次调用这个方法的时候再实施binding。 做到的方法也很简单: 通过dyld_stub_binder 这个符号来做。 lazy binding的方法第一次会调用到dyld_stub_binder, 然后dyld_stub_binder负责找到真实的方法,并且将地址bind到桩上,下一次就不用再bind了。
7. 链接所有插入的库,执行符号替换
对sAllimages内所有加载好的Image(除了主程序的Image外)中的库调用link
进行链接,然后调用registerInterposing
注册符号替换。
// link any inserted libraries
// do this after linking main executable so that any dylibs pulled in by inserted
// dylibs (e.g. libSystem) will not be in front of dylibs the program uses
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
image->setNeverUnloadRecursive();
}
// only INSERTED libraries can interpose
// register interposing info after all inserted libraries are bound so chaining works
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->registerInterposing(gLinkContext);
}
}
8. 执行初始化方法
// run all initializers
initializeMainExecutable();
initializeMainExecutable
执行初始化方法,其中+load和constructor方法就是在这里执行。initializeMainExecutable
内部先调用了动态库的初始化方法,后调用主程序的初始化方法。在Imageloader::recursiveInitialization
里面调用了如下内容:
context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
全局搜索static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
找到如下代码段:
if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
uint64_t t0 = mach_absolute_time();
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
uint64_t t1 = mach_absolute_time();
uint64_t t2 = mach_absolute_time();
uint64_t timeInObjC = t1-t0;
uint64_t emptyTime = (t2-t1)*100;
if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
timingInfo->addTime(image->getShortName(), timeInObjC);
}
}
此处调用了sNotifyObjCInit
(从名称可以知道大概是通知runtime的意思(ObjCInit)),而sNotifyObjCInit
是在此处赋值:
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
// record functions to call
sNotifyObjCMapped = mapped;
sNotifyObjCInit = init;
sNotifyObjCUnmapped = unmapped;
// call 'mapped' function with all images mapped so far
try {
notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true);
}
catch (const char* msg) {
// ignore request to abort during registration
}
// call 'init' function on all images already init'ed (below libSystem)
for (std::vector::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) {
ImageLoader* image = *it;
if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
}
}
}
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped)
{
dyld::registerObjCNotifiers(mapped, init, unmapped);
}
查看函数定义:
//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded. During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images. During any later dlopen() call,
// dyld will also call the "mapped" function. Dyld will call the "init" function when dyld would be called
// initializers in that image. This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped);
_dyld_objc_notify_register
函数是是供objc runtime调用的,可以在objc4源码中的_objc_init
中找到记录:
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
这几步操作实际上是sNotifyObjCInit
调用就是objc中的load_images
,而后者会调用所有的+load
方法,我们回到新建工程的界面查看函数调用栈,也可以发现确实是这样的调用顺序:
调用context.notifySingle
之后,会调用ImageLoaderMachO::doInitialization
,内部调用doImageInit
、ImageLoaderMachO::doModInitFunctions
,其中ImageLoaderMachO::doModInitFunctions
内部调用__mod_init_funcs section
,也就是constructor方法。
9. 寻找主程序入口
差不多到了_main的末尾,调用getEntryFromLC_MAIN
读取Mach-O的LC_MAIN段获取程序的入口地址,也就是我们的main函数入口地址。
四、小结
写到这里差不多已经乱掉,dyld加载过程真是非常复杂,这是自己学习过程的一次简陋笔记,很短时间内码出来,自己也觉得写得不太好,如果日后遇到回来再看看能否改良,如有出错,有请高手指出赐教!最后用一张图简单总结一下流程吧:
五、参考
iOS程序启动->dyld加载->runtime初始化(初识)
DYLD加载Mach-O完整流程
iOS 程序 main 函数之前发生了什么
dylib动态库加载过程分析
dyld加载Mach-O
dyld与ObjC
《iOS应用逆向与安全》--刘培庆