人脸关键点检测

一:目标
人脸关键点检测是在人脸检测的基础上,对人脸上的特征点例如眼睛、鼻子、嘴巴等进行定位。本例是使用caffe框架实现的结果,效果如下:
人脸关键点检测_第1张图片

二:数据源的制作
       因为lmdb不支持多标签,所以这里使用的是hdf5格式,支持多标签。
       卷积神经网络可以用于分类和回归任务,做分类任务时最后一个全连接层的输出维度为类别数,接着Softmax层采用Softmax Loss计算损失函数,而如果做回归任务,最后一个全连接层的输出维度则是要回归的坐标值的个数,采用的是欧几里何损失Euclidean Loss。
       训练卷积神经网络来回归特征点坐标。如果只采用一个网络来做回归训练的话,会发现得到的特征点坐标不够准确,采用级联回归CNN的方法,进行分段式特征点定位,可以更快速、准确的定位人脸特征点。如果采用更大的网络,特征点的预测会更加准确,但耗时会增加;为了在速度和性能上找到一个平衡点,使用较小的网络,所以使用级联的思想,先进行粗检测,然后微调特征点。具体思路如下图:
人脸关键点检测_第2张图片

1、 首先在整个人脸图像(红色方框)上训练一个网络来对人脸特征点坐标进行粗回归,实际采用的网络其输入大小为39*39的人脸区域灰度图,预测时可以得到特征点的大概位置,第一层分为三波,分别是对五个点、左右眼和鼻子、鼻子和嘴巴。
2、 设计另一个回归网络,以人脸特征点(取得是level1训练之后得到的特征点)周围的局部区域图像(level2和level3中的黄色区域)作为输入进行训练,实际采用的网络为其输入大小为15*15的特征点局部区域灰度图,以预测到更加准确的特征点位置。这里level3比level2定义的输入区域要小一点。

人脸关键点检测_第3张图片

如上图3所示为的卷积网络结构,level1网络的输入层使用的是39*39的单通道灰色图像,经过四个带池化层的卷积层,最后经过全连接层,输出一个维度为10的结果,代表5个特征点的坐标值,在最后一层是欧几里得损失层,计算的是网络预测的坐标值与真实值(都是相对值)之间的均值误差的积累。网络结构文件见1_F_train.prototxt。
solver超参数文件见1_F_solver.prototxt,选用的是CPU模式(如果有GPU资源,选用GPU即可):
第一层训练完成之后,得到预测结果,这是已经得到预测的特征点位置,但可能不够精确,接下来进入第二、三层训练,得到更加精确的结构。第一层使用的是一个较深一点的网络,估计关键点的位置;第二、三层共享一个较浅一点的网络,实现高精度。
第二层训练,以第一层训练得到的5个特征点为基础,每个特征点做两组数据集,即以第一组数据集特征点为中心,局部框大小为(2*0.18*W,2*0.18*H),其中W和H为人脸框的宽和高,并对此局部框做随机的微小平移使得特征点在局部框中的位置随机,裁剪出一个大小为15*15的局部框图像,第二组数据和第一组数据一样,只是框比例取0.16(第三层的两组数据比例为0.11、0.12,其余和第二层一样)。对每个特征点,针对这两组数据集采用同样的网络,得到两组模型;预测时,采用两组模型预测的均值作为预测结果,提高预测的准确度。第二层网络代码见level2.py
第二层网路配置见2_LE1_solver.prototxt。
第二层超参数配置见2_LE1_solver.prototxt
第三层网络代码见leve3.py
第三层网路配置见3_LE1_train.prototxt
第三层超参数配置见3_LE1_solver.prototxt

执行leve1.py 生成第一阶段需要的hdf5数据源

level1.py

#!/usr/bin/env python2.7

# coding: utf-8


import os
import time
import math
from os.path import join, exists
import cv2
import numpy as np
import h5py
from utils_common import shuffle_in_unison_scary, logger, createDir, processImage
from utils_common import getDataFromTxt
from utils import show_landmark,flip,rotate


TRAIN = '/home/tom/PycharmProjects/pythonPro/deep_landmark/cnn-face-data'
OUTPUT = '/home/tom/PycharmProjects/pythonPro/deep_landmark/dataset1/train'
if not exists(OUTPUT):
    os.mkdir(OUTPUT)
assert(exists(TRAIN) and exists(OUTPUT))


def generate_hdf5(ftxt, output, fname, argument=False):

    data = getDataFromTxt(ftxt)
    F_imgs = []
    F_landmarks = []
    EN_imgs = []
    EN_landmarks = []
    NM_imgs = []
    NM_landmarks = []

    for (imgPath, bbox, landmarkGt) in data:
        img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE)
        assert(img is not None)
        logger("process %s" % imgPath)
        # F
        f_bbox = bbox.subBBox(-0.05, 1.05, -0.05, 1.05)
        f_face = img[int(round(f_bbox.top)):int(round(f_bbox.bottom+1)),int(round(f_bbox.left)):int(round(f_bbox.right+1))]

        ## data argument
        if argument and np.random.rand() > -1:
            ### flip
            face_flipped, landmark_flipped = flip(f_face, landmarkGt)
            face_flipped = cv2.resize(face_flipped, (39, 39))
            F_imgs.append(face_flipped.reshape((1, 39, 39)))
            F_landmarks.append(landmark_flipped.reshape(10))
            ### rotation
            """
            if np.random.rand() > 0.5:
                face_rotated_by_alpha, landmark_rotated = rotate(img, f_bbox, \
                    bbox.reprojectLandmark(landmarkGt), 5)
                landmark_rotated = bbox.projectLandmark(landmark_rotated)
                face_rotated_by_alpha = cv2.resize(face_rotated_by_alpha, (39, 39))
                F_imgs.append(face_rotated_by_alpha.reshape((1, 39, 39)))
                F_landmarks.append(landmark_rotated.reshape(10))
                ### flip with rotation
                face_flipped, landmark_flipped = flip(face_rotated_by_alpha, landmark_rotated)
                face_flipped = cv2.resize(face_flipped, (39, 39))
                F_imgs.append(face_flipped.reshape((1, 39, 39)))
                F_landmarks.append(landmark_flipped.reshape(10))
            ### rotation
            if np.random.rand() > 0.5:
                face_rotated_by_alpha, landmark_rotated = rotate(img, f_bbox, \
                    bbox.reprojectLandmark(landmarkGt), -5)
                landmark_rotated = bbox.projectLandmark(landmark_rotated)
                face_rotated_by_alpha = cv2.resize(face_rotated_by_alpha, (39, 39))
                F_imgs.append(face_rotated_by_alpha.reshape((1, 39, 39)))
                F_landmarks.append(landmark_rotated.reshape(10))
                ### flip with rotation
                face_flipped, landmark_flipped = flip(face_rotated_by_alpha, landmark_rotated)
                face_flipped = cv2.resize(face_flipped, (39, 39))
                F_imgs.append(face_flipped.reshape((1, 39, 39)))
                F_landmarks.append(landmark_flipped.reshape(10))
            """
        f_face = cv2.resize(f_face, (39, 39))
        en_face = f_face[:31, :]
        nm_face = f_face[8:, :]

        f_face = f_face.reshape((1, 39, 39))
        f_landmark = landmarkGt.reshape((10))
        F_imgs.append(f_face)
        F_landmarks.append(f_landmark)

        # EN
        # en_bbox = bbox.subBBox(-0.05, 1.05, -0.04, 0.84)
        # en_face = img[en_bbox.top:en_bbox.bottom+1,en_bbox.left:en_bbox.right+1]

        ## data argument
        if argument and np.random.rand() > 0.5:
            ### flip
            face_flipped, landmark_flipped = flip(en_face, landmarkGt)
            face_flipped = cv2.resize(face_flipped, (31, 39)).reshape((1, 31, 39))
            landmark_flipped = landmark_flipped[:3, :].reshape((6))
            EN_imgs.append(face_flipped)
            EN_landmarks.append(landmark_flipped)

        en_face = cv2.resize(en_face, (31, 39)).reshape((1, 31, 39))
        en_landmark = landmarkGt[:3, :].reshape((6))
        EN_imgs.append(en_face)
        EN_landmarks.append(en_landmark)

        # NM
        # nm_bbox = bbox.subBBox(-0.05, 1.05, 0.18, 1.05)
        # nm_face = img[nm_bbox.top:nm_bbox.bottom+1,nm_bbox.left:nm_bbox.right+1]

        ## data argument
        if argument and np.random.rand() > 0.5:
            ### flip
            face_flipped, landmark_flipped = flip(nm_face, landmarkGt)
            face_flipped = cv2.resize(face_flipped, (31, 39)).reshape((1, 31, 39))
            landmark_flipped = landmark_flipped[2:, :].reshape((6))
            NM_imgs.append(face_flipped)
            NM_landmarks.append(landmark_flipped)

        nm_face = cv2.resize(nm_face, (31, 39)).reshape((1, 31, 39))
        nm_landmark = landmarkGt[2:, :].reshape((6))
        NM_imgs.append(nm_face)
        NM_landmarks.append(nm_landmark)

    #imgs, landmarks = process_images(ftxt, output)

    F_imgs, F_landmarks = np.asarray(F_imgs), np.asarray(F_landmarks)
    EN_imgs, EN_landmarks = np.asarray(EN_imgs), np.asarray(EN_landmarks)
    NM_imgs, NM_landmarks = np.asarray(NM_imgs),np.asarray(NM_landmarks)

    F_imgs = processImage(F_imgs)
    shuffle_in_unison_scary(F_imgs, F_landmarks)
    EN_imgs = processImage(EN_imgs)
    shuffle_in_unison_scary(EN_imgs, EN_landmarks)
    NM_imgs = processImage(NM_imgs)
    shuffle_in_unison_scary(NM_imgs, NM_landmarks)

    # full face
    base = join(OUTPUT, '1_F')
    createDir(base)
    output = join(base, fname)
    logger("generate %s" % output)
    with h5py.File(output, 'w') as h5:
        h5['data'] = F_imgs.astype(np.float32)
        h5['landmark'] = F_landmarks.astype(np.float32)

    # eye and nose
    base = join(OUTPUT, '1_EN')
    createDir(base)
    output = join(base, fname)
    logger("generate %s" % output)
    with h5py.File(output, 'w') as h5:
        h5['data'] = EN_imgs.astype(np.float32)
        h5['landmark'] = EN_landmarks.astype(np.float32)

    # nose and mouth
    base = join(OUTPUT, '1_NM')
    createDir(base)
    output = join(base, fname)
    logger("generate %s" % output)
    with h5py.File(output, 'w') as h5:
        h5['data'] = NM_imgs.astype(np.float32)
        h5['landmark'] = NM_landmarks.astype(np.float32)



if __name__ == '__main__':
    # train data
    h5_path = '/home/tom/PycharmProjects/pythonPro/deep_landmark/dataset1/'
    train_txt = join(TRAIN, 'trainImageList.txt')
    generate_hdf5(train_txt, OUTPUT, 'train.h5', argument=True)

    test_txt = join(TRAIN, 'testImageList.txt')
    generate_hdf5(test_txt, OUTPUT, 'test.h5')

    with open(join(OUTPUT, '1_F/train.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_F/train.h5')
    with open(join(OUTPUT, '1_EN/train.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_EN/train.h5')
    with open(join(OUTPUT, '1_NM/train.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_NM/train.h5')
    with open(join(OUTPUT, '1_F/test.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_F/test.h5')
    with open(join(OUTPUT, '1_EN/test.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_EN/test.h5')
    with open(join(OUTPUT, '1_NM/test.txt'), 'w') as fd:
        fd.write(h5_path+'train/1_NM/test.h5')
    # Done

utils.py

# coding: utf-8
"""
    functions
"""

import os
import cv2
import numpy as np


def show_landmark(face, landmark):
    """
        view face with landmark for visualization
    """
    face_copied = face.copy().astype(np.uint8)
    for (x, y) in landmark:
        xx = int(face.shape[0]*x)
        yy = int(face.shape[1]*y)
        cv2.circle(face_copied, (xx, yy), 2, (0,0,0), -1)
    cv2.imshow("face_rot", face_copied)
    cv2.waitKey(0)


def rotate(img, bbox, landmark, alpha):
    """
        given a face with bbox and landmark, rotate with alpha
        and return rotated face with bbox, landmark (absolute position)
    """
    center = ((bbox.left+bbox.right)/2, (bbox.top+bbox.bottom)/2)
    rot_mat = cv2.getRotationMatrix2D(center, alpha, 1)
    img_rotated_by_alpha = cv2.warpAffine(img, rot_mat, img.shape)
    landmark_ = np.asarray([(rot_mat[0][0]*x+rot_mat[0][1]*y+rot_mat[0][2],
                 rot_mat[1][0]*x+rot_mat[1][1]*y+rot_mat[1][2]) for (x, y) in landmark])
    face = img_rotated_by_alpha[bbox.top:bbox.bottom+1,bbox.left:bbox.right+1]
    return (face, landmark_)


def flip(face, landmark):
    """
        flip the face and 
        exchange the eyes and mouths point
        face_flipped_by_x = output array of the same size and type as src
        landmark_ = changed landmark point
    """
    face_flipped_by_x = cv2.flip(face, 1)
    landmark_ = np.asarray([(1-x, y) for (x, y) in landmark])
    landmark_[[0, 1]] = landmark_[[1, 0]]
    landmark_[[3, 4]] = landmark_[[4, 3]]
    return (face_flipped_by_x, landmark_)

def randomShift(landmarkGt, shift):
    """
        Random Shift one time
    """
    diff = np.random.rand(5, 2)
    diff = (2*diff - 1) * shift
    landmarkP = landmarkGt + diff
    return landmarkP

def randomShiftWithArgument(landmarkGt, shift):
    """
        Random Shift more
    """
    N = 2
    landmarkPs = np.zeros((N, 5, 2))
    for i in range(N):
        landmarkPs[i] = randomShift(landmarkGt, shift)
    return landmarkPs

utils_common.py

# coding: utf-8

import os
from os.path import join, exists
import time
import cv2
import numpy as np
from cnns import getCNNs


def logger(msg):
    """
        log message
    """
    now = time.ctime()
    print("[%s] %s" % (now, msg))

def createDir(p):
    if not os.path.exists(p):
        os.mkdir(p)

def shuffle_in_unison_scary(a, b):
    rng_state = np.random.get_state()
    np.random.shuffle(a)
    np.random.set_state(rng_state)
    np.random.shuffle(b)

def drawLandmark(img, bbox, landmark):
    cv2.rectangle(img, (bbox.left, bbox.top), (bbox.right, bbox.bottom), (0,0,255), 2)
    for x, y in landmark:
        cv2.circle(img, (int(x), int(y)), 2, (0,255,0), -1)
    return img

def getDataFromTxt(txt, with_landmark=True):
    """
        Generate data from txt file
        return [(img_path, bbox, landmark)]
            bbox: [left, right, top, bottom]
            landmark: [(x1, y1), (x2, y2), ...]
    """
    dirname = os.path.dirname(txt)
    with open(txt, 'r') as fd:
        lines = fd.readlines()

    result = []
    for line in lines:
        line = line.strip()
        components = line.split(' ')
        img_path = os.path.join(dirname, components[0].replace('\\', '/')) # file path
        # bounding box, (left, right, top, bottom)
        bbox = (components[1], components[2], components[3], components[4])
        bbox = [int(_) for _ in bbox]
        # landmark
        if not with_landmark:
            result.append((img_path, BBox(bbox)))
            continue
        landmark = np.zeros((5, 2))
        for index in range(0, 5):
            rv = (float(components[5+2*index]), float(components[5+2*index+1]))
            landmark[index] = rv
        for index, one in enumerate(landmark):
            rv = ((one[0]-bbox[0])/(bbox[1]-bbox[0]), (one[1]-bbox[2])/(bbox[3]-bbox[2]))
            landmark[index] = rv
        result.append((img_path, BBox(bbox), landmark))
    return result

def getPatch(img, bbox, point, padding):
    """
        Get a patch iamge around the given point in bbox with padding
        point: relative_point in [0, 1] in bbox
    """
    point_x = bbox.x + point[0] * bbox.w
    point_y = bbox.y + point[1] * bbox.h
    patch_left = point_x - bbox.w * padding
    patch_right = point_x + bbox.w * padding
    patch_top = point_y - bbox.h * padding
    patch_bottom = point_y + bbox.h * padding
    patch = img[int(round(patch_top)): int(round(patch_bottom+1)), int(round(patch_left)): int(round(patch_right+1))]
    patch_bbox = BBox([patch_left, patch_right, patch_top, patch_bottom])
    return patch, patch_bbox


def processImage(imgs):
    """
        process images before feeding to CNNs
        imgs: N x 1 x W x H
    """
    imgs = imgs.astype(np.float32)
    for i, img in enumerate(imgs):
        m = img.mean()
        s = img.std()
        imgs[i] = (img - m) / s
    return imgs

def dataArgument(data):
    """
        dataArguments
        data:
            imgs: N x 1 x W x H
            bbox: N x BBox
            landmarks: N x 10
    """
    pass

class BBox(object):
    """
        Bounding Box of face
    """
    def __init__(self, bbox):
        self.left = bbox[0]
        self.right = bbox[1]
        self.top = bbox[2]
        self.bottom = bbox[3]
        self.x = bbox[0]
        self.y = bbox[2]
        self.w = bbox[1] - bbox[0]
        self.h = bbox[3] - bbox[2]

    def expand(self, scale=0.05):
        bbox = [self.left, self.right, self.top, self.bottom]
        bbox[0] -= int(self.w * scale)
        bbox[1] += int(self.w * scale)
        bbox[2] -= int(self.h * scale)
        bbox[3] += int(self.h * scale)
        return BBox(bbox)

    def project(self, point):
        x = (point[0]-self.x) / self.w
        y = (point[1]-self.y) / self.h
        return np.asarray([x, y])

    def reproject(self, point):
        x = self.x + self.w*point[0]
        y = self.y + self.h*point[1]
        return np.asarray([x, y])

    def reprojectLandmark(self, landmark):
        p = np.zeros((len(landmark), 2))
        for i in range(len(landmark)):
            p[i] = self.reproject(landmark[i])
        return p

    def projectLandmark(self, landmark):
        p = np.zeros((len(landmark), 2))
        for i in range(len(landmark)):
            p[i] = self.project(landmark[i])
        return p

    def subBBox(self, leftR, rightR, topR, bottomR):
        leftDelta = self.w * leftR
        rightDelta = self.w * rightR
        topDelta = self.h * topR
        bottomDelta = self.h * bottomR
        left = self.left + leftDelta
        right = self.left + rightDelta
        top = self.top + topDelta
        bottom = self.top + bottomDelta
        return BBox([left, right, top, bottom])

你可能感兴趣的:(caffe)