what is SSD|Single Shot MultiBox Detector

文章摘选自多篇文章,仅用于学习,在此表示感谢,若有侵权请联系,感谢


论文下载地址:https://arxiv.org/abs/1512.02325

论文代码:https://github.com/weiliu89/caffe/tree/ssd


省去了区域建议网络,直接使用不同尺度feature map中的cell得到priod box(和anchor类似),利用卷积可以直接得到box的回归和score而不需要分支

论文翻译


Abstract

我们提出了一种使用单个深度神经网络来检测图像中的目标的方法。我们的方法命名为SSD,将边界框的输出空间离散化为不同长宽比的一组默认框和并缩放每个特征映射的位置。在预测时,网络会在每个默认框中为每个目标类别的出现生成分数,并对框进行调整以更好地匹配目标形状。此外,网络还结合了不同分辨率的多个特征映射的预测,自然地处理各种尺寸的目标。相对于需要目标提出的方法,SSD非常简单,因为它完全消除了提出生成和随后的像素或特征重新采样阶段,并将所有计算封装到单个网络中。这使得SSD易于训练和直接集成到需要检测组件的系统中。PASCAL VOC,COCO和ILSVRC数据集上的实验结果证实,SSD对于利用额外的目标提出步骤的方法具有竞争性的准确性,并且速度更快,同时为训练和推断提供了统一的框架。对于300×300的输入,SSD在VOC2007测试中以59FPS的速度在Nvidia Titan X上达到74.3%74.3%的mAP,对于512×512的输入,SSD达到了76.9%76.9%的mAP,优于参照的最先进的Faster R-CNN模型。与其他单阶段方法相比,即使输入图像尺寸较小,SSD也具有更高的精度。代码获取:https://github.com/weiliu89/caffe/tree/ssd。

1.introduction

目前最先进的目标检测系统是以下方法的变种:假设边界框,每个框重采样像素或特征,并应用一个高质量的分类器。自从选择性搜索[1]通过在PASCAL VOC,COCO和ILSVRC上所有基于Faster R-CNN[2]的检测都取得了当前领先的结果(尽管具有更深的特征如[3]),这种流程在检测基准数据上流行开来。尽管这些方法准确,但对于嵌入式系统而言,这些方法的计算量过大,即使是高端硬件,对于实时应用而言也太慢。通常,这些方法的检测速度是以每帧秒(SPF)度量,甚至最快的高精度检测器,Faster R-CNN,仅以每秒7帧(FPS)的速度运行。已经有很多尝试通过处理检测流程中的每个阶段来构建更快的检测器(参见第4节中的相关工作),但是到目前为止,显著提高的速度仅以显著降低的检测精度为代价。

selective search应该是用在fastrcnn和rcnn中的结构,fasterrcnn用的应该是rpn?

本文提出了第一个基于深度网络的目标检测器,它不对边界框假设的像素或特征进行重采样,并且与其它方法有一样精确度。这对高精度检测在速度上有显著提高(在VOC2007测试中,59FPS和74.3%74.3%的mAP,与Faster R-CNN 7FPS和73.2%73.2%的mAP或者YOLO 45 FPS和63.4%63.4%的mAP相比)。速度的根本改进来自消除边界框提出和随后的像素或特征重采样阶段。我们并不是第一个这样做的人(查阅[4,5]),但是通过增加一系列改进,我们设法比以前的尝试显著提高了准确性。我们的改进包括使用小型卷积滤波器来预测边界框位置中的目标类别和偏移量,使用不同长宽比检测的单独预测器(滤波器),并将这些滤波器应用于网络后期的多个特征映射中,以执行多尺度检测。通过这些修改——特别是使用多层进行不同尺度的预测——我们可以使用相对较低的分辨率输入实现高精度,进一步提高检测速度。虽然这些贡献可能单独看起来很小,但是我们注意到由此产生的系统将PASCAL VOC实时检测的准确度从YOLO的63.4%63.4%的mAP提高到我们的SSD的74.3%74.3%的mAP。相比于最近备受瞩目的残差网络方面的工作[3],在检测精度上这是相对更大的提高。而且,显著提高的高质量检测速度可以扩大计算机视觉使用的设置范围

我们总结我们的贡献如下:

1)我们引入了SSD,这是一种针对多个类别的单次检测器,比先前的先进的单次检测器(YOLO)更快,并且准确得多,事实上,与执行显式区域提出和池化的更慢的技术具有相同的精度(包括Faster R-CNN)。

2)SSD的核心是预测固定的一系列默认边界框的类别分数和边界框偏移,使用更小的卷积滤波器应用到特征映射上。

3)为了实现高检测精度,我们根据不同尺度的特征映射生成不同尺度的预测,并通过纵横比明确分开预测。

4)这些设计功能使得即使在低分辨率输入图像上也能实现简单的端到端训练和高精度,从而进一步提高速度与精度之间的权衡。

实验包括在PASCAL VOC,COCO和ILSVRC上评估具有不同输入大小的模型的时间和精度分析,并与最近的一系列最新方法进行比较。

2.the single shot detector

本节描述我们提出的SSD检测框架(2.1节)和相关的训练方法(2.2节)。之后,2.3节介绍了数据集特有的模型细节和实验结果。

2.1 model

用于检测的多尺度特征映射。我们将卷积特征层添加到截取的基础网络的末端。这些层在尺寸上逐渐减小,并允许在多个尺度上对检测结果进行预测。用于预测检测的卷积模型对于每个特征层都是不同的(查阅Overfeat[4]和YOLO[5]在单尺度特征映射上的操作)。

图2:两个单次检测模型的比较:SSD和YOLO[5]。我们的SSD模型在基础网络的末端添加了几个特征层,它预测了不同尺度和长宽比的默认边界框的偏移量及其相关的置信度。300×300输入尺寸的SSD在VOC2007 test上的准确度上明显优于448×448的YOLO的准确度,同时也提高了速度。

用于检测的卷积预测器每个添加的特征层(或者任选的来自基础网络的现有特征层)可以使用一组卷积滤波器产生固定的检测预测集合。这些在图2中的SSD网络架构的上部指出。对于具有p通道的大小为m×n的特征层,潜在检测的预测参数的基本元素是3×3×p的小核得到某个类别的分数,或者相对于默认框坐标的形状偏移。在应用卷积核的m×n的每个位置,它会产生一个输出值。边界框偏移输出值是相对每个特征映射位置的相对默认框位置来度量的(查阅YOLO[5]的架构,该步骤使用中间全连接层而不是卷积滤波器)。

默认边界框和长宽比。对于网络顶部的多个特征映射,我们将一组默认边界框与每个特征映射单元相关联。默认边界框以卷积的方式平铺特征映射,以便每个边界框相对于其对应单元的位置是固定的。在每个特征映射单元中,我们预测单元中相对于默认边界框形状的偏移量,以及指出每个边界框中存在的每个类别实例的类别分数。具体而言,对于给定位置处的k个边界框中的每一个,我们计算c个类别分数和相对于原始默认边界框形状的44个偏移量。这导致在特征映射中的每个位置周围应用总共(c+4)k个滤波器,对于m×n的特征映射取得(c+4)kmn个输出。有关默认边界框的说明,请参见图1。我们的默认边界框与Faster R-CNN[2]中使用的锚边界框相似,但是我们将它们应用到不同分辨率的几个特征映射上。在几个特征映射中允许不同的默认边界框形状让我们有效地离散可能的输出框形状的空间。

2.2 training

训练SSD和训练使用区域提出的典型检测器之间的关键区别在于,需要将真实信息分配给固定的检测器输出集合中的特定输出。在YOLO[5]的训练中、Faster R-CNN[2]和MultiBox[7]的区域提出阶段,一些版本也需要这样的操作。一旦确定了这个分配,损失函数和反向传播就可以应用端到端了。训练也涉及选择默认边界框集合和缩放进行检测,以及难例挖掘和数据增强策略。

匹配策略。在训练过程中,我们需要确定哪些默认边界框对应实际边界框的检测,并相应地训练网络。对于每个实际边界框,我们从默认边界框中选择,这些框会在位置,长宽比和尺度上变化。我们首先将每个实际边界框与具有最好的Jaccard重叠(如MultiBox[7])的边界框相匹配。与MultiBox不同的是,我们将默认边界框匹配到Jaccard重叠高于阈值(0.5)的任何实际边界框。这简化了学习问题,允许网络为多个重叠的默认边界框预测高分,而不是要求它只挑选具有最大重叠的一个边界框。

Jaccard重叠即IoU。


SSD算法是一种直接预测目标类别和bounding box的多目标检测算法。与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度。针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS)。而SSD算法则利用不同卷积层的 feature map进行综合也能达到同样的效果。算法的主网络结构是VGG16,将最后两个全连接层改成卷积层,并随后增加了4个卷积层来构造网络结构。对其中5种不同的卷积层的输出(feature map)分别用两个不同的3×3 的卷积核进行卷积,一个输出分类用的confidence,每个defaultbox 生成21个类别confidence;一个输出回归用的 localization,每个 default box 生成4个坐标值(x, y, w, h)。此外,这5个feature map还经过 PriorBox 层生成 prior box(生成的是坐标)。上述5个feature map中每一层的default box的数量是给定的(8732个)。最后将前面三个计算结果分别合并然后传给loss层。

文章的核心之一是作者同时采用lower和upper的feature map做检测。如图Fig 1 所示,这里假定有8×8和4×4两种不同的feature map。第一个概念是feature map cell,feature map cell 是指feature map中每一个小格子,如图中分别有64和16个cell。另外有一个概念:default box,是指在feature map的每个小格(cell)上都有一系列固定大小的box,如下图有4个(下图中的虚线框,仔细看格子的中间有比格子还小的一个box)。假设每个feature map cell有k个default box,那么对于每个default box都需要预测c个类别score和4个offset,那么如果一个feature map的大小是m×n,也就是有m*n个feature map cell,那么这个feature map就一共有(c+4)*k * m*n 个输出。这些输出个数的含义是:采用3×3的卷积核对该层的feature map卷积时卷积核的个数,包含两部分(实际code是分别用不同数量的3*3卷积核对该层feature map进行卷积):数量c*k*m*n是confidence输出,表示每个default box的confidence,也就是类别的概率;数量4*k*m*n是localization输出,表示每个default box回归后的坐标)。训练中还有一个东西:prior box,是指实际中选择的default box(每一个feature map cell 不是k个default box都取)。也就是说default box是一种概念,prior box则是实际的选取。训练中一张完整的图片送进网络获得各个feature map,对于正样本训练来说,需要先将prior box与ground truth box做匹配,匹配成功说明这个prior box所包含的是个目标,但离完整目标的ground truth box还有段距离,训练的目的是保证default box的分类confidence的同时将prior box尽可能回归到ground truth box。 举个列子:假设一个训练样本中有2个ground truth box,所有的feature map中获取的prior box一共有8732个。那个可能分别有10、20个prior box能分别与这2个ground truth box匹配上。训练的损失包含定位损失和回归损失两部分。

作者的实验表明default box的shape数量越多,效果越好。这里用到的default box和Faster RCNN中的anchor很像,在Faster RCNN中 anchor 只用在最后一个卷积层,但是在本文中,default box 是应用在多个不同层的feature map上。

那么default box的scale(大小)和aspect ratio(横纵比)要怎么定呢?假设我们用m个feature maps做预测,那么对于每个featuer map而言其default box的scale是按以下公式计算的:

这里smin是0.2,表示最底层的scale是0.2;smax是0.9,表示最高层的scale是0.9。至于aspect ratio,用arar表示为下式:注意这里一共有5种aspect ratioar={1,2,3,1/2,1/3}因此每个default box:

因此,对于每个feature map cell而言,一共有6种default box。 可以看出这种default box在不同的feature层有不同的scale,在同一个feature层又有不同的aspect ratio,因此基本上可以覆盖输入图像中的种形状和大小的object!(训练自己的样本的时候可以在FindMatch()之后检查是否能覆盖了所有的 ground truth box)源代码中的ssd_pascal.py设计了上面几个参数值,caffe 源码prior_box_layer.cppForward_cpu()实现。最后会得到(38*38*4 + 19*19*6 + 10*10*6 + 5*5*6 + 3*3*4 + 1*1*4)=8732个prior box。

prior box 和 grount truth box按照IOU(JaccardOverlap)进行匹配,匹配成功则这个prior box就是positive example(正样本),如果匹配不上,就是negative example(负样本),显然这样产生的负样本的数量要远远多于正样本。这里将前向loss进行排序,选择最高的num_sel个prior box序号集合 D。那么如果Match成功后的正样本序号集合P。那么最后正样本集为 P−D∩P,负样本集为 D−D∩P。同时可以通过规范num_sel的数量(是正样本数量的三倍)来控制使得最后正、负样本的比例在 1:3左右。

正样本获得:我们已经在图上画出了prior box,同时也有了ground truth,那么下一步就是将prior box匹配到ground truth上,这是在src/caffe/utlis/bbox_util.cppFindMatches以及子函数MatchBBox函数里完成的。值得注意的是先是从groudtruth box出发给每个groudtruth box找到了最匹配的prior box放入候选正样本集,然后再从prior box出发为prior box集中寻找与groundtruth box满足IOU>0.5IOU>0.5的一个IOU最大的prior box(如果有的话)放入候选正样本集,这样显然就增大了候选正样本集的数量。

负样本获得:在生成一系列的 prior boxes 之后,会产生很多个符合 ground truth box 的 positive boxes(候选正样本集),但同时,不符合 ground truth boxes 也很多,而且这个 negative boxes(候选负样本集),远多于 positive boxes。这会造成 negative boxes、positive boxes 之间的不均衡。训练时难以收敛。

因此,本文采取,先将每一个物体位置上对应 predictions(prior boxes)loss 进行排序。 对于候选正样本集:选择最高的几个prior box与正样本集匹配(box索引同时存在于这两个集合里则匹配成功),匹配不成功则删除这个正样本(因为这个正样本不在难例里已经很接近ground truth box了,不需要再训练了);对于候选负样本集:选择最高的几个prior box与候选负样本集匹配,匹配成功则作为负样本。这就是一个难例挖掘的过程,举个例子,假设在这8732个prior box里,经过FindMatches后得到候选正样本P个,候选负样本那就有8732−P个。将prior box的prediction loss按照从大到小顺序排列后选择最高的M个prior box。如果这P个候选正样本里有a个box不在这M个prior box里,将这M个box从候选正样本集中踢出去。如果这8732−P个候选负样本集中包含的8732−P8732−P有M−a个在这M个prior box,则将这M−a个候选负样本作为负样本。SSD算法中通过这种方式来保证 positives、negatives 的比例。实际代码中有三种负样本挖掘方式:

如果选择HARD_EXAMPLE方式(源于论文Training Region-based Object Detectors with Online Hard Example Mining),则默认M=64M=64,由于无法控制正样本数量,这种方式就有点类似于分类、回归按比重不同交替训练了。如果选择MAX_NEGATIVE方式,则M=P∗neg_pos_ratioM=P∗neg_pos_ratio,这里当neg_pos_ratio=3neg_pos_ratio=3的时候,就是论文中的正负样本比例1:3了。

Data augmentation:本文同时对训练数据做了 data augmentation,数据增广。每一张训练图像,随机的进行如下几种选择:

使用原始的图像

随机采样多个 patch(CropImage),与物体之间最小的 jaccard overlap 为:0.1,0.3,0.5,0.7 与0.9

采样的 patch 是原始图像大小比例是[0.3,1.0],aspect ratio 在 0.5或2。

当 groundtruth box 的 中心(center)在采样的 patch 中且在采样的 patch中 groundtruth box面积大于0时,我们保留CropImage。在这些采样步骤之后,每一个采样的 patch 被 resize 到固定的大小,并且以0.5 的概率随机的 水平翻转(horizontally flipped,翻转不翻转看prototxt,默认不翻转)这样一个样本被诸多batch_sampler采样器采样后会生成多个候选样本,然后从中随机选一个样本送人网络训练。

SSD的结构在VGG16网络的基础上进行修改,训练时同样为conv1_1,conv1_2,conv2_1,conv2_2,conv3_1,conv3_2,conv3_3,conv4_1,conv4_2,conv4_3,conv5_1,conv5_2,conv5_3(512),fc6经过3*3*1024的卷积(原来VGG16中的fc6是全连接层,这里变成卷积层,下面的fc7层同理),fc7经过1*1*1024的卷积,conv6_1,conv6_2(对应上图的conv8_2),conv7_1,conv7_2,conv,8_1,conv8_2,conv9_1,conv9_2,loss。然后一方面:针对conv4_3(4),fc7(6),conv6_2(6),conv7_2(6),conv8_2(4),conv9_2(4)(括号里数字是每一层选取的default box种类)中的每一个再分别采用两个3*3大小的卷积核进行卷积,这两个卷积核是并列的(括号里的数字代表prior box的数量,可以参考Caffe代码,所以上图中SSD结构的倒数第二列的数字8732表示的是所有prior box的数量,是这么来的38*38*4+19*19*6+10*10*6+5*5*6+3*3*4+1*1*4=8732),这两个3*3的卷积核一个是用来做localization的(回归用,如果prior box是6个,那么就有6*4=24个这样的卷积核,卷积后map的大小和卷积前一样,因为pad=1,下同),另一个是用来做confidence的(分类用,如果prior box是6个,VOC的object类别有20个,那么就有6*(20+1)=126个这样的卷积核)。如下图是conv6_2的localizaiton的3*3卷积核操作,卷积核个数是24(6*4=24,由于pad=1,所以卷积结果的map大小不变,下同):这里的permute层就是交换的作用,比如你卷积后的维度是32×24×19×19,那么经过交换层后就变成32×19×19×24,顺序变了而已。而flatten层的作用就是将32×19×19×24变成32*8664,32是batchsize的大小。另一方面结合conv4_3(4),fc7(6),conv6_2(6),conv7_2(6),conv8_2(4),conv9_2(4)中的每一个和数据层(ground truth boxes)经过priorBox层生成prior box。经过上述两个操作后,对每一层feature的处理就结束了。对前面所列的5个卷积层输出都执行上述的操作后,就将得到的结果合并:采用Concat,类似googleNet的Inception操作,是通道合并而不是数值相加。

损失函数:和Faster RCNN的基本一样,由分类和回归两部分组成,可以参考Faster RCNN,这里不细讲。总之,回归部分的loss是希望预测的box和prior box的差距尽可能跟ground truth和prior box的差距接近,这样预测的box就能尽量和ground truth一样。


训练过程中的 prior boxes 和 ground truth boxes 的匹配,基本思路是:让每一个 prior box 回归并且到 ground truth box,这个过程的调控我们需要损失层的帮助,他会计算真实值和预测值之间的误差,从而指导学习的走向。

SSD 训练的目标函数(training objective)源自于MultiBox的目标函数,但是本文将其拓展,使其可以处理多个目标类别。具体过程是我们会让每一个 prior box 经过Jaccard系数计算和真实框的相似度,阈值只有大于0.5的才可以列为候选名单;假设选择出来的是N个匹配度高于百分之五十的框吧,我们令表示第i个默认框,j表示第j个真实框,p表示第p个类。那么xpijxijp表示 第i 个 prior box 与 类别p 的 第j 个 ground truth box 相匹配的Jaccard系数,若不匹配的话,则xpij=0xijp=0。总的目标损失函数(objective loss function)就由 localization loss(loc) 与 confidence loss(conf) 的加权求和:

    N 是与 ground truth box 相匹配的 prior boxes 个数

    localization loss(loc) 是Fast R-CNN 中 Smooth L1 Loss,用在 predict box(l) 与 ground truth box(g) 参数(即中心坐标位置,width、height)中,回归 bounding boxes 的中心位置,以及 width、height

    confidence loss(conf) 是 Softmax Loss,输入为每一类的置信度c

    权重项α,可在protxt中设置 loc_weight,默认设置为 1

你可能感兴趣的:(what is SSD|Single Shot MultiBox Detector)