NumPy中的维度Axis

文章目录

  • 浅谈NumPy中的维度Axis
    • 二维数组的列子
    • 多维数组

版权声明:本文为博主原创文章,转载请注明原文出处!

写作时间:2019-04-16 14:56:53


浅谈NumPy中的维度Axis

NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组。

(有人将ndim属性叫维度,将axis叫轴,我还是习惯将axis称之为维度,axis=0称为第一个维度)

二维数组的列子

下面是一个二维数组的列子:

In [1]: import numpy as np

In [2]: x = np.random.randint(0, 9, (2, 3))

In [3]: x
Out[3]:
array([[0, 8, 6],
       [1, 2, 1]])

In [4]: x.ndim
Out[4]: 2

In [5]: x.shape
Out[5]: (2, 3)

In [6]: x[0]
Out[6]: array([0, 8, 6])

In [7]: x[:, 0]
Out[7]: array([0, 1])

In [8]: x.sum(axis=0)
Out[8]: array([ 1, 10,  7])

In [9]: x.sum(axis=1)
Out[9]: array([14,  4])

In [10]: x[0] + x[1]
Out[10]: array([ 1, 10,  7])

In [11]: x[:, 0] + x[:, 1] + x[:, 2]
Out[11]: array([14,  4])

看上面这个例子,x是一个2行3列的数组,所以x是一个二维数组。

从第6和第7个输入输出,我们可以肯定地说"对于二维数组,第一维指的是行,第二维指的是列"。

我们通过sum求和函数,探究一下x的第一维和第二维的意义?从第8个和第9个输入输出,我们可以看到对于参数axis=0,其结果是数组列的和;而对于参数axis=1,其参数是数组行的和。

对于axis=0第一个维度求和,不是将第一维度(行)中的所有元素相加,而是沿着第一个维度,将对应其他维度(列)的数据相加,分解开来就是第10个输入输出。同理,对于axis=1,是沿着列,将行中的元素相加。

NumPy中对于维度的操作都是以类似这样的逻辑操作的。

多维数组

对于多维数组我们如何准确区分维度呢?下面以图示进行说明:
NumPy中的维度Axis_第1张图片

所以,我的结论就是:在概念上维度是从整体到局部看的,最外围的是第一个维度,然后依次往里,最内部的就是最后一维。

下面我们用代码验证一下上面的结论:

In [19]: x = np.random.randint(0, 9, (2, 3, 4))

In [20]: x
Out[20]:
array([[[0, 7, 5, 5],
        [6, 3, 1, 3],
        [7, 5, 3, 4]],

       [[8, 1, 4, 6],
        [8, 1, 4, 8],
        [3, 0, 8, 2]]])

In [21]: x[0]
Out[21]:
array([[0, 7, 5, 5],
       [6, 3, 1, 3],
       [7, 5, 3, 4]])

In [22]: x[:, 0, :]
Out[22]:
array([[0, 7, 5, 5],
       [8, 1, 4, 6]])

可以看到,第21个输入输出取到的是第一维的第一个元素,第22个输入输出取到的是第二维的第一个元素。大家可以细细体味一下!

你可能感兴趣的:(Python)