AdversarialNetsPapers

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

 [Generative Adversarial Nets] [Paper] [Code](the first paper about it)

Unclassified

 [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

 [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)

 [Adversarial Autoencoders] [Paper][Code]

 [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]

 [Generating images with recurrent adversarial networks] [Paper][Code]

 [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

 [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

 [Learning What and Where to Draw] [Paper][Code]

 [Adversarial Training for Sketch Retrieval] [Paper]

 [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

 [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

 [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

 [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper, CVPR 2017 Best Paper )

 [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

 [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

 [Adversarial Feature Learning] [Paper]

Ensemble

 [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)

Clustering

 [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)

Image blending

 [GP-GAN: Towards Realistic High-Resolution Image Blending] [Paper][Code]

Image Inpainting

 [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code](CVPR 2017)

 [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

 [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]

 [Generative face completion] [Paper][code](CVPR2017)

 [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)

Joint Probability

 [Adversarially Learned Inference][Paper][Code]

Super-Resolution

 [Image super-resolution through deep learning ][Code](Just for face dataset)

 [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

 [EnhanceGAN] [Docs][[Code]]

Disocclusion

 [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

 [Adversarial Deep Structural Networks for Mammographic Mass Segmentation] [Paper][Code]

 [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)

Object Detection

 [Perceptual generative adversarial networks for small object detection] [Paper](CVPR 2017)

 [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)

RNN

 [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

 [Conditional Generative Adversarial Nets] [Paper][Code]

 [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code][Code]

 [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

 [Pixel-Level Domain Transfer] [Paper][Code]

 [Invertible Conditional GANs for image editing] [Paper][Code]

 [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

 [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

 [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)

 [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis & style transfer

 [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

Image translation

 [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]

 [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

 [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]

 [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]

 [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]

 [Unsupervised Image-to-Image Translation Networks] [Paper]

GAN Theory

 [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

 [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)

 [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

 [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

 [Sampling Generative Networks] [Paper][Code]

 [How to train Gans] [Docu]

 [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

 [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

 [Least Squares Generative Adversarial Networks] [Paper][Code]

 [Wasserstein GAN] [Paper][Code]

 [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

 [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

3D

 [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

 [Transformation-Grounded Image Generation Network for Novel 3D View Synthesis] [Web](CVPR 2017)

MUSIC

 [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]

Face Generative and Editing

 [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

 [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

 [Invertible Conditional GANs for image editing] [Paper][Code]

 [Learning Residual Images for Face Attribute Manipulation] [Paper][code](CVPR 2017)

 [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)

 [Neural Face Editing with Intrinsic Image Disentangling] [Paper](CVPR 2017)

 [Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis][Paper](ICCV 2017)

For discrete distributions

 [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]

 [Boundary-Seeking Generative Adversarial Networks] [Paper]

 [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]

Adversarial Examples

 [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]

Project

 [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

 [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

 [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

Author Address
inFERENCe Adversarial network
inFERENCe InfoGan
distill Deconvolution and Image Generation
yingzhenli Gan theory
OpenAI Generative model

Other

 [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

 [2] [PDF](NIPS Lecun Slides)


你可能感兴趣的:(无监督学习)