转载自https://handong1587.github.io/deep_learning/2015/10/09/image-retrieval.html
Image Retrieval
Published:
09 Oct 2015
Category:
deep_learning
Jump to...
- Papers
- Video Indexing / Retrieval
- Learning to Rank
- Talks / Slides
- Datasets
- Projects
- Blogs
- Tutorials
Using Very Deep Autoencoders for Content-Based Image Retrieval
- intro: ESANN 2011. Alex Krizhevsky, and Geoffrey E. Hinton
- paper: https://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf
- paper: http://www.cs.toronto.edu/~fritz/absps/esann-deep-final.pdf
Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data
- arxiv: http://arxiv.org/abs/1312.4740
- paper: http://legacy.openreview.net/document/90fc8dad-ad02-4ddc-ab06-e7b55706869d#90fc8dad-ad02-4ddc-ab06-e7b55706869d
Neural Codes for Image Retrieval
- project page: http://sites.skoltech.ru/compvision/projects/neuralcodes/
- arxiv: http://arxiv.org/abs/1404.1777
- github: https://github.com/arbabenko/Spoc
Efficient On-the-fly Category Retrieval using ConvNets and GPUs
- arxiv: http://arxiv.org/abs/1407.4764
Hashing by Deep Learning
- intro: IBM T. J. Watson Research Center
- paper: http://www.ee.columbia.edu/~wliu/WeiLiu_DLHash.pdf
Deep Learning of Binary Hash Codes for Fast Image Retrieval
- intro: CVPR Workshop 2015
- intro: MNIST, CIFAR-10, Yahoo-1M
- paper: http://www.iis.sinica.edu.tw/~kevinlin311.tw/cvprw15.pdf
- github: https://github.com/kevinlin311tw/caffe-cvprw15
Learning visual similarity for product design with convolutional neural networks
- intro: SIGGRAPH 2015
- paper: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf
- paper: http://dl.acm.org.sci-hub.cc/citation.cfm?doid=2809654.2766959
Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval
- intro: CVPR 2015
- arxiv: http://arxiv.org/abs/1501.06272
Exploiting Local Features from Deep Networks for Image Retrieval
- intro: CVPR DeepVision Workshop 2015
- arxiv: https://arxiv.org/abs/1504.05133
Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image Search
- intro: SSDH
- arxiv: http://arxiv.org/abs/1507.00101
- github: https://github.com/kevinlin311tw/Caffe-DeepBinaryCode
Visual Search at Pinterest
- arxiv: http://arxiv.org/abs/1505.07647
- blog: https://engineering.pinterest.com/blog/introducing-new-way-visually-search-pinterest
Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network
- intro: ICCV 2015
- intro: DARN, cross-entropy loss, triplet loss
- arxiv: http://arxiv.org/abs/1505.07922
Aggregating Deep Convolutional Features for Image Retrieval
- intro: ICCV 2015
- intro: Sum pooing
- arxiv: http://arxiv.org/abs/1510.07493
Feature Learning based Deep Supervised Hashing with Pairwise Labels
- intro: IJCAI 2016
- arxiv: http://arxiv.org/abs/1511.03855
- code: http://cs.nju.edu.cn/lwj/code/DPSH_code.rar
Particular object retrieval with integral max-pooling of CNN activations
- intro: use max-pooling to aggregate the deep descriptors, R-MAC (regional maximum activation of convolutions)
- arxiv: https://arxiv.org/abs/1511.05879
Group Invariant Deep Representations for Image Instance Retrieval
- arxiv: http://arxiv.org/abs/1601.02093
Where to Buy It: Matching Street Clothing Photos in Online Shops
- intro: ICCV 2015
- hmepage: http://www.tamaraberg.com/street2shop/
- paper: http://www.tamaraberg.com/papers/street2shop.pdf
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html
Natural Language Object Retrieval
- intro: CVPR 2015
- homepage: http://ronghanghu.com/text_obj_retrieval/
- arxiv: http://arxiv.org/abs/1511.04164
- slides: http://ronghanghu.com/slides/cvpr16_text_obj_retrieval_slides.pdf
- github: https://github.com/ronghanghu/natural-language-object-retrieval
- github: https://github.com/andrewliao11/Natural-Language-Object-Retrieval-tensorflow
Deep Image Retrieval: Learning global representations for image search
- intro: ECCV 2016
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1604.01325
- slides: http://www.slideshare.net/xavigiro/deep-image-retrieval-learning-global-representations-for-image-search
Bags of Local Convolutional Features for Scalable Instance Search
- intro: ICMR 2016. Best Poster Award at ICMR 2016.
- project page: https://imatge-upc.github.io/retrieval-2016-icmr/
- arxiv: https://arxiv.org/abs/1604.04653
- github: https://github.com/imatge-upc/retrieval-2016-icmr
- slides: http://www.slideshare.net/xavigiro/convolutional-features-for-instance-search
Faster R-CNN Features for Instance Search
- intro: DeepVision Workshop in CVPR 2016
- homepage: http://imatge-upc.github.io/retrieval-2016-deepvision/
- arxiv: http://arxiv.org/abs/1604.08893
- github: https://github.com/imatge-upc/retrieval-2016-deepvision
Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps
- intro: query adaptive matching (QAM), Feature Map Pooling, Overlapped Spatial Pyramid Pooling (OSPP)
- arxiv: https://arxiv.org/abs/1606.06811
Adversarial Training For Sketch Retrieval
- arxiv: http://arxiv.org/abs/1607.02748
Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
- intro: CVPR 2016. DeepBit
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Learning_Compact_Binary_CVPR_2016_paper.pdf
- github: https://github.com/kevinlin311tw/cvpr16-deepbit
Fast Training of Triplet-based Deep Binary Embedding Networks
- intro: CVPR 2016
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf
Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles
- intro: CVPR 2016
- intro: vehicle re-identification, vehicle retrieval. coupled clusters loss
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf
DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations
- intro: CVPR 2016. FashionNet
- project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/DeepFashion.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
- intro: ECCV 2016
- project page(paper+code+data): http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html
- arxiv: https://arxiv.org/abs/1604.02426
- paper: http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf
- code(Matlab): http://ptak.felk.cvut.cz/personal/radenfil/siamac/siaMAC_code.tar.gz
SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
- arxiv: http://arxiv.org/abs/1607.08477
Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval
- intro: Microsoft
- paper: http://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/Deep-Semantic-Preserving-and-Ranking-Based-Hashing-for-Image-Retrieval.pdf
PicHunt: Social Media Image Retrieval for Improved Law Enforcement
- arxiv: http://arxiv.org/abs/1608.00905
SIFT Meets CNN: A Decade Survey of Instance Retrieval
- arxiv: http://arxiv.org/abs/1608.01807
Deep Hashing: A Joint Approach for Image Signature Learning
- arxiv: http://arxiv.org/abs/1608.03658
Transitive Hashing Network for Heterogeneous Multimedia Retrieval
- intro: state of the art on NUS-WIDE, ImageNet-YahooQA
- arxiv: http://arxiv.org/abs/1608.04307
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies
- project page: http://sketchy.eye.gatech.edu/
- paper: http://www.cc.gatech.edu/~hays/tmp/sketchy-database.pdf
- github: https://github.com/janesjanes/sketchy
End-to-end Learning of Deep Visual Representations for Image Retrieval
- intro: ECCV 2016
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1610.07940
What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?
- arxiv: https://arxiv.org/abs/1611.01640
Deep Residual Hashing
- arxiv: https://arxiv.org/abs/1612.05400
Image Retrieval with Deep Local Features and Attention-based Keypoints
- arxiv: https://arxiv.org/abs/1612.05478
Internet-Based Image Retrieval Using End-to-End Trained Deep Distributions
- arxiv: https://arxiv.org/abs/1612.07697
Compression of Deep Neural Networks for Image Instance Retrieval
- intro: DCC 2017
- arxiv: https://arxiv.org/abs/1701.04923
Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval
- arxiv: https://arxiv.org/abs/1701.05003
Deep Region Hashing for Efficient Large-scale Instance Search from Images
- intro: Columbia University & University of Electronic Science and Technology of China
- arxiv: https://arxiv.org/abs/1701.07901
HashNet: Deep Learning to Hash by Continuation
- arxiv: https://arxiv.org/abs/1702.00758
Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval
- arxiv: https://arxiv.org/abs/1702.00338
Deep Geometric Retrieval
- arxiv: https://arxiv.org/abs/1702.06383
Unsupervised Triplet Hashing for Fast Image Retrieval
- arxiv: https://www.arxiv.org/abs/1702.08798
Context Aware Query Image Representation for Particular Object Retrieval
https://www.arxiv.org/abs/1703.01226
Face Video Retrieval via Deep Learning of Binary Hash Representations
- paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/11893/12117
Deep Learning Based Semantic Video Indexing and Retrieval
- arxiv: https://arxiv.org/abs/1601.07754
Learning Joint Representations of Videos and Sentences with Web Image Search
- intro: 4th Workshop on Web-scale Vision and Social Media (VSM), ECCV 2016
- arxiv: http://arxiv.org/abs/1608.02367
Multi-View Product Image Search Using ConvNets Features
- arxiv: http://arxiv.org/abs/1608.03462
Generalisation and Sharing in Triplet Convnets for Sketch based Visual Search
- arxiv: https://arxiv.org/abs/1611.05301
Binary Subspace Coding for Query-by-Image Video Retrieval
- arxiv: https://arxiv.org/abs/1612.01657
Deep Supervised Hashing with Triplet Labels
- intro: ACCV 2016
- arxiv: https://arxiv.org/abs/1612.03900
Simple to Complex Cross-modal Learning to Rank
- intro: Xi’an Jiaotong University & University of Technology Sydney & National University of Singapore & CMU
- arxiv: https://arxiv.org/abs/1702.01229
TiefVision: end-to-end image similarity search engine
- intro: It covers image classification, image location ( OverFeat ) and image similarity ( Deep Ranking).
- slides:https://docs.google.com/presentation/d/16hrXJhOzkbmla9AL7JCreCuBsa5L80gm71Pfrjo7F9Y/edit#slide=id.p
- github: https://github.com/paucarre/tiefvision
Oxford5k
Paris6k
Oxford105k
UKB
NUS-WIDE
ImageNet-YahooQA
Visual Search Server
- intro: A simple implementation of Visual Search using features extracted from Tensorflow inception model and Approximate Nearest Neighbors
- github: https://github.com/AKSHAYUBHAT/VisualSearchServer
Vehicle Retrieval: vehicle image retrieval using k CNNs ensemble method
- intro: ranked 1st and won the special prize in the final of the 3rd National Gradute Contest on Smart-CIty Technology and Creative Design, China
- project page: https://www.pkuml.org/resources/pku-vehicleid.html
- github: https://github.com/iamhankai/vehicle-retrieval-kCNNs
Where can I buy a chair like that? – This app will tell you
- blog: http://www.news.cornell.edu/stories/2016/08/where-can-i-buy-chair-app-will-tell-you
Using Sketches to Search for Products Online
- homepage: http://sketchx.eecs.qmul.ac.uk/
- blog: https://news.developer.nvidia.com/using-sketches-to-search-for-products-online/
Deep Image Retrieval: Learning global representations for image search
- youtube: https://www.youtube.com/watch?v=yT52xDML6ys
Image Instance Retrieval: Overview of state-of-the-art
- youtube: https://www.youtube.com/watch?v=EYq-rpaZn1o