- Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
zzfive
生成模型论文阅读kotlin开发语言android
论文链接:VisualAutoregressiveModeling:ScalableImageGenerationviaNext-ScalePrediction文章目录简介预测下一个token自回归模型范式分析VAR详解分词实现细节幂律缩放定律零样本泛化能力结论简介本文提出的视觉自回归建模/VAR这种新范式,其将图像的自回归学习重新定义为从粗到细的“下一个尺度预测”或“下一个分辨率预测”,与常规的
- 算力网赋能工业互联网:智能调度与安全融合创新
智能计算研究中心
其他
内容概要工业互联网的深化发展正面临数据处理效率与系统安全性的双重挑战,而算力网通过技术融合与资源协同,成为破解这一难题的核心路径。当前,工业场景中设备互联规模持续扩大,实时数据流处理需求激增,传统集中式计算架构在响应速度与能耗控制方面显现瓶颈。算力网通过构建智能调度机制,实现任务优先级动态划分与资源弹性分配,在智能检测、故障预测等场景中,将平均响应延迟降低40%以上。行业观察:Gartner研究显
- Saprk中RDD詳解
文子轩
一.常用的transfromRDD算子通過並行化scala創建RDDvalrdd1=sc.parallelize(Array(1,2,3,4,5,6,7,8))查看該RDD的分區數量rdd1.partitions.lengthres23:Int=4使用filter算子valrdd2=sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(
- filebeat改造支持rocketmq
余很多之很多
goJavarocketmq
继续分享下以前在gitchat上发布的文章:filebeat改造支持rocketmq1.概述1.1问题概述现在越来越多的日志采集使用FileBeat,FileBeat是个轻量型日志采集器,采用Go语言实现,性能稳健,占用资源少。FileBeat现在支持采集的日志内容发送到Redis、Elasticsearch、Kafka、Logstash。那么我们如果想通过FileBeat采集日志到RocketM
- Apache Kafka 学习笔记
一、Kafka简介1.1Kafka是什么?Kafka是一个高吞吐、可扩展、分布式的消息发布-订阅系统,主要用于:日志收集与处理流式数据处理事件驱动架构实时分析管道最初由LinkedIn开发,后捐赠给Apache基金会。1.2Kafka的核心特性特性描述高吞吐每秒百万级消息处理能力,依赖顺序写磁盘、批量处理分布式支持水平扩展,多个Broker组成集群持久化消息写入磁盘(通过segmentfiles+
- Python文件与流处理:高效读写数据的艺术
不爱说话的分院帽
python快速入门python数据库开发语言
引言作为一名程序员,我们每天都需要与文件打交道——无论是读取配置文件、处理日志文件,还是存储程序生成的数据。Python提供了强大而灵活的文件处理能力,让这些操作变得简单高效。本文将深入探讨Python中的文件与流处理,帮助你掌握这一核心技能。、一、文件操作基础1.打开文件Python使用内置的open()函数来打开文件:#基本语法file=open('example.txt','r')#打开文件
- ARTS-第七周
梧上擎天
Algorithm一、用链表和二叉树实现Set集合GitHub地址二、散列表散列表就是使用数组下标随机访问时候复杂度为O(1)的特性,当我们按照键值查找元素时,通过散列函数将key转化为下标然后进行访问,当有大量散列冲突时会退化为O(n)的时间复杂度。解决散列冲突的方法:开放寻址法和链表法ReviewFlink动态表概念原文地址流和表为什么可以相互转换呢?我们都知道传统Mysql的主从复制是通过b
- MTK CAMERA ISP6S SFP
YoonAphrodite
mtkcameramtk
1,mtkcam3/pipeline/pipeline/PipelineContextImpl.cpplaunchOneNode()2.mtkcam3/pipeline/pipeline/NodeActorImpl.cppinit()-->onInit()3.mtkcam3/pipeline/hwnode/p2/P2_StreamingNode.cppinit()4.mtkcam3/pipelin
- Kafka 集群架构与高可用方案设计(一)
计算机毕设定制辅导-无忧
#Kafkakafka架构分布式
Kafka集群架构与高可用方案设计的重要性在大数据和分布式系统的广阔领域中,Kafka已然成为了一个中流砥柱般的存在。它最初由LinkedIn开发,后捐赠给Apache软件基金会并成为顶级项目,凭借其卓越的高吞吐量、可扩展性以及持久性,被广泛应用于日志收集、实时数据处理、流计算、数据集成等诸多关键领域。在日志收集场景下,以大型互联网公司为例,每天都会产生海量的日志数据,如用户的访问记录、系统操作日
- Kafka 集群架构与高可用方案设计(二)
计算机毕设定制辅导-无忧
#Kafkakafka架构分布式
Kafka集群架构与高可用方案的优化策略合理配置参数在Kafka集群的配置中,参数的合理设置对于系统的高可用性和性能表现起着关键作用。例如,min.insync.replicas参数定义了ISR(In-SyncReplicas,同步副本)集合中的最少副本数,它直接关系到数据的持久性和一致性。当acks设置为all或-1时,生产者需要等待ISR中的所有副本都确认写操作后才认为成功,此时min.ins
- 大数据集成方案对比:Kafka vs Flume vs Sqoop
AI天才研究院
计算AI大模型应用入门实战与进阶AgenticAI实战大数据kafkaflumeai
大数据集成方案对比:KafkavsFlumevsSqoop关键词:大数据集成、Kafka、Flume、Sqoop、流处理、批量迁移、日志收集摘要:在大数据生态中,数据集成是连接数据源与数据处理平台的关键环节。本文深度对比Kafka、Flume、Sqoop三大主流集成工具,从核心架构、技术原理、适用场景到实战案例展开系统性分析。通过数学模型量化性能差异,结合实际项目经验总结选型策略,帮助开发者根据业
- 【Hadoop】onekey_install脚本
菜萝卜子
Linuxhadoop大数据分布式
hosts[root@kafka01hadoop-script]#cat/etc/hosts127.0.0.1localhostlocalhost.localdomainlocalhost4localhost4.localdomain4::1localhostlocalhost.localdomainlocalhost6localhost6.localdomain6192.168.100.150k
- 如何解决一个flink on yarn集群上已经跑了一个job,再提交第二个job的时候,task报java heap size oom的问题
fzip
Flinkflinkjava大数据
在FlinkonYARN集群中提交第二个Job时出现Task的JavaHeapSizeOOM(内存溢出),核心原因是集群资源不足(第一个Job已占用大量资源,第二个Job分配的内存不够)或Job资源配置不合理(单个Job申请资源过多,或内存参数设置与实际需求不匹配)。解决需从“资源排查”“Job配置优化”“集群资源扩容”三个维度入手,具体步骤如下:一、先排查核心原因:确认资源占用与配置是否匹配1.
- flink sql读hive catalog数据,将string类型的时间戳数据排序后写入kafka,如何保障写入kafka的数据是有序的
fzip
Flinkflinksqlhive
在FlinkSQL中,要确保从Hive读取的STRING类型时间戳数据排序后有序写入Kafka,需要结合批处理模式、时间类型转换、单分区写入和Kafka生产者配置。以下是完整解决方案:一、核心解决方案1.批处理模式+全局排序将作业设置为批处理模式,并对字符串时间戳进行类型转换后排序:--设置为批处理模式(关键!)SET'execution.runtime-mode'='batch';--从Hive
- Kafka面试问题1
小小少年Boy
1请说明什么是ApacheKafka?Kafka是分布式发布-订阅消息系统。Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务。它主要用于处理活跃的流式数据。它可以同时用于在线消息数据处理,和离线的数据文件处理。2、请说明什么是传统的消息传递方法?传统的消息传递方法包括两种:排队:在队列中,一组用户可以从服务器中读取消息,每条消息都发送给其中一个人。发布-订阅:在这个模型中,消息被广播
- flink-sql读写hive-1.13
第一片心意
flinkflinksqlhive
1.版本说明本文档内容基于flink-1.13.x,其他版本的整理,请查看本人博客的flink专栏其他文章。1.1.概述ApacheHive已经成为了数据仓库生态系统中的核心。它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样也是一个数据管理平台,可用于发现,定义,和演化数据。Flink与Hive的集成包含两个层面。一是利用了Hive的MetaStore作为持久化的Catalog,用户可通
- 数据分析的三大框架:底层技术、分析建模、工具选择
YHFHing
数据分析数据分析
有了世界观,我们可以开始搭建自己的知识大厦了。在搭建知识大厦之前,先需要建立知识的框架,然后才能高效的填充知识。所以今天我们先建立框架。数据分析的三大框架数据科学的框架分为三部分:底层技术框架/数据分析框架/工具选择框架,接下来依次给大家介绍:1.底层技术框架底层技术框是数据科学的基础设施,我们有所了解就好,处理框架和处理引擎负责对数据系统中的数据进行计算。流处理系统:流处理系统会对随时进入系统的
- flink sql如何对hive string类型的时间戳进行排序
在FlinkSQL中对Hive表的STRING类型时间戳进行排序,需要先将字符串转换为时间类型,再基于时间类型排序。以下是具体方法和示例:一、核心解决方案1.字符串转TIMESTAMP后排序若Hive中的时间戳格式为'yyyy-MM-ddHH:mm:ss'(如'2024-01-0112:00:00'),可直接转为TIMESTAMP排序:SELECT*FROMhive_tableORDERBYTO_
- AI日报-20250620:华为云重磅发布盘古大模型5.5!宇树科技C轮融资引爆资本圈!Genspark AI Pod震撼发布!
未来世界2099
AI日报人工智能华为云科技业界资讯
1、昆仑万维开源Skywork-SWE-32B:32B模型刷新代码修复SOTA,性能直逼闭源巨头2、腾讯AILab开源音乐生成大模型SongGeneration,人人皆可创作音乐!3、重磅!ManusAIWindows版免码开放,职场效率革命来袭!4、B站618商单效率飙升5倍!通义千问3助力AI选人功能大爆发5、HailuoVideoAgent震撼发布:零门槛生成专业级视频,创意秒变现实!6、中
- 分布式定时器:原理设计与技术挑战
你一身傲骨怎能输
架构设计分布式
文章摘要分布式定时器用于在分布式系统中可靠、准确地触发定时任务,常见实现方案包括:基于数据库/消息队列的定时扫描、分布式任务调度框架(如Quartz集群、xxl-job)、时间轮/延迟队列(如Redis/Kafka)以及Zookeeper/Etcd协调服务。主要技术挑战包括时钟同步、任务幂等、高可用、负载均衡和故障恢复等。核心难点在于保证任务唯一性、调度精度与分布式一致性,技术选型需权衡轻量级(R
- Filebeat + Logstash + ES进行Nginx日志采集
一个只会喊666的菜比
简易架构图service.png架构图比较简单,日志收集大同小异,这次不添加任何中间服务比如:rediskafka后端只是存储进ES使用的版本jdk-8u161-linux-x64.rpmelasticsearch-6.7.2.rpmlogstash-6.7.2.rpmfilebeat-6.7.2-x86_64.rpm安装比较简单,只用进行rpm-ivh即可,接下来直接贴配置文件:Elastics
- 伽卡他卡电子教室:技术原理、功能解析与教育场景实践
一、术语澄清与技术定位“伽卡他卡”(Gakataka)在计算机科学领域的核心实体为伽卡他卡电子教室软件。需注意其与无关技术的区别:❌与分布式流处理平台ApacheKafka无技术关联;❌与AI模型GauGAN、半导体技术GAA等“G”开头术语无关。核心定位:一款专为教育场景设计的局域网教学管理软件,由伽卡他卡公司开发。二、核心功能与应用场景1.核心模块屏幕广播:实时传输教师端操作画面;远程控制:教
- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- 基于Socket来构建无界数据流并通过Flink框架进行处理
每天五分钟玩转人工智能
Flink技术实战flink大数据Flink分布式无界数据
本文重点随着大数据技术的不断发展,实时数据流处理已成为企业应对海量数据、实现快速决策的关键技术。ApacheFlink是一个开源的流处理框架,它能够对无界数据流进行高效的、精确的处理。本文将介绍如何通过Socket构建无界数据流,并利用Flink框架进行无界流处理。基于Socket构建无界数据无界数据指的是源源不断产生的数据,这些数据通常来自各种实时数据源,如用户行为日志、传感器数据等。Socke
- Flink cdc同步增量数据timestamp字段相差八小时(分析|解决)不是粘贴复制的!
BUG FIXER
大数据flinkandroid大数据
问题我使用flinkcdc同步mysql到mysql遇到了timestamp字段缺少八小时的问题。很少无语,flink,cdc,debezium时区都设置了,没有任何效果!分析问题出现在mysqlbinlog身上!!!因为默认mysql会使用UTC来存储binlog,你可以使用下方的sql验证:mysqlbinlog--base64-output=DECODE-ROWS-v--start-date
- 如何解决Flink CDC同步时间类型字段8小时时间差的问题,以MySQL为例
智海观潮
Flinkflinkflinkcdc大数据实时数据同步
在使用FlinkCDC进行数据同步时,默认情况下经常会遇到时间类型的字段与实际值相差8个小时的问题。本文以MySQL为例提供解决方案,其他数据源也可以参考这类实现。原文链接:https://mp.weixin.qq.com/s/_f41ES8UquM-kj3Ie8JU_g1.设置server时区比如MySQL服务的时区为UTC时间,可以参考以下code设置时区。MySqlSourcemySqlSo
- kafka的基本使用
柔弱的富po
kafkakafkazookeeper分布式
kafka3.0的基本使用一、kafka基本使用1.启动kafka服务zookeeper+kafka的使用进入kafka/bin目录下./kafka-server-start.sh-daemon../config/server.properties验证是否启动成功:进入到zk中的节点看id是0的broker有没有存在(上线)ls/brokers/idsserver.properties核心配置详解
- Kafka入门使用教程
1.前言1.1.什么是消息队列消息队列(MQ)是消息传递中间件解决方案的一个组件,旨在支持独立的应用和服务之间的信息交换。消息队列按发送顺序存储“消息”(由应用所创建、供其他应用使用的数据包),直到使用方应用能够处理它们为止。这些消息安全地等待接收方应用做好准备,因此,即使网络或接收方应用出现问题,消息队列中的消息也不会丢失。1.2.为什么用消息队列1.2.1.解耦生产者(客户端)发送消息到MQ中
- Paimon对比基于消息队列(如Kafka)的传统实时数仓方案的优势
lifallen
Paimon大数据数据库数据结构java分布式apache数据仓库
弊端:数据重复->优势:Paimon主键表原生去重原方案弊端(Kafka)问题:消息队列(Kafka)是仅支持追加(Append-Only)的日志流。当Flink作业发生故障恢复(Failover)或业务逻辑迭代重跑数据时,同样的数据会被再次写入消息队列,形成重复数据。影响:下游应用(如DWS层、ADS层或直接对接的BI报表)必须自己实现复杂的去重逻辑,这不仅消耗大量计算资源(“资源消耗至少增加一
- Flink 流处理的核心基石【时间语义、水位线、状态、检查点、反压 】
csdn_tom_168
大数据flink核心时间语义水位线状态检查点反压
Flink流处理的核心基石【时间语义、水位线、状态、检查点、反压】,这些概念相互协作,构建了Flink高吞吐、低延迟、高容错的实时计算能力。以下是这些核心技术的深度解析及其内在联系:一、五大基石的内在联系驱动触发计算持久化保护恢复时间语义水位线状态管理检查点反压二、核心组件深度解析1.时间语义(TimeSemantics)核心作用:定义事件的时间维度//设置事件时间语义(关键配置)env.setS
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl