TensorFlow学习--CIFAR-10

CIFAR-10数据集

CIFAR-10数据集包含10个类的60000张32x32的彩色图像,每个类有6000张图像.有50000张训练图像和10000张测试图像.CIFAR-10数据集
10个分类明细及对应的部分图片:
TensorFlow学习--CIFAR-10_第1张图片

教程代码

其中主要涉及的文件:

文件 作用
cifar10_input.py 读取本地二进制文件
cifar10_input_test.py 输入测试
cifar10.py 建立CIFAR-10模型
cifar10_train.py 在CPU或GPU上训练模型
cifar10_eval.py 评估模型的预测性能
cifar10_multi_gpu_train.py 在多GPU上训练模型

cifar10_input.py

cifar10_input.py的作用是读取CIFAR-10的二进制文件.

cifar10_input.py中主要有4部分:

  • read_cifar10() 读取二进制CIFAR10数据
  • _generate_image_and_label_batch() 构建[images,labels]的队列
  • distorted_inputs() 读入并增广数据为训练构建输入
  • inputs() 图像预处理并为预测构建输入

其中

  1. read_cifar10()
    在CIFAR10数据的二进制文件中,第一个字节是图像标签是一个0-9的数字;接下来的3072个字节是像素值.由于每个图片的存储字节数是固定的,因此函数read_cifar10(filename_queue)中使用tf.FixedLengthRecordReader每次从文件中读取固定长度的字段.
    在像素值的3072(3*1024)个字节中,RGB通道分别1024个,以行优先顺序存储.
    二进制文件中,每个文件都包含10000个3073字节的行图像,没有分隔行限制,每个文件是30730000字节长.文件中没有页眉页脚,因此函数read_cifar10(filename_queue)中的tf.FixedLengthRecordReader()的参数header_bytes和footer_bytes都设为默认值0.
  2. _generate_image_and_label_batch()
    函数使用16个独立线程,16个线程被连续的安排在一个队列中;每次在执行读取一个 batch_size数量的样本[images,labels].分别在distorted_inputs()与inputs()中被调用,用来构建输入队列.
  3. distorted_inputs()
    distorted_inputs()为训练构建输入.在读取图像数据后,依次对图像进行了以下操作:
    随机裁剪大小为24*24的图像
    随机水平翻转图像
    随机调整图像亮度
    随机调整图像对比度
    标准化处理:减去均值除以方差,线性缩放为零均值的单位范数
    这样,增加了训练样本的数量,实现了数据增广.然后调用_generate_image_and_label_batch()构建图像和标签的队列.
        # 随机裁剪[height, width]大小的图像
        distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
        # 随机水平翻转图像
        distorted_image = tf.image.random_flip_left_right(distorted_image)
        # 随机调整图像亮度与对比度(不可交换)
        distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
        distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
        # 减去均值除以方差,线性缩放为零均值的单位范数:白化/标准化处理
        float_image = tf.image.per_image_standardization(distorted_image)
  1. inputs()
    inputs()为预测构建输入.通过以下操作:
    在图像的中心裁剪24*24大小的图像
    减去平均值并除以像素的方差,保证数据均值为0,方差为1
    对图像进行预处理.然后调用_generate_image_and_label_batch()构建图像和标签的队列.
        # 用于评估的图像处理
        # 在图像的中心裁剪[height, width]大小的图像,裁剪中央区域用于评估
        resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, height, width)
        # 减去平均值并除以像素的方差,保证数据均值为0,方差为1
        float_image = tf.image.per_image_standardization(resized_image)

cifar10.py

cifar10.py的作用是构建CIFAR-10模型.

cifar10.py中主要有4部分:

  • 模型输入:distorted_inputs() inputs()
  • 模型训练:loss() _add_loss_summaries() train()等
  • 模型预测:inference()等

其中,

  1. 模型输入部分
    distorted_inputs()通过调用cifar10_input.yp中的distorted_inputs()为CIFAR-10训练构建输入;inputs()通过调用cifar10_input.yp中的inputs()为CIFAR-10预测构建输入.
  2. 模型训练部分
    loss()将L2损失添加到所有可训练变量.在计算logits和labels之间的交叉熵时,使用函数tf.nn.sparse_softmax_cross_entropy_with_logits()可在函数内部将labels稀疏化,因此loss()可以直接输入非稀疏的标签.
    即原来使用函数tf.nn.softmax_cross_entropy_with_logits()计算交叉熵时,输入标签需要先稀疏化,常用one-hot编码,即标签[0,1,2]对应的稀疏化编码为[1 0 0][0 1 0][0 0 1];现在函数tf.nn.sparse_softmax_cross_entropy_with_logits()内部包含将labels稀疏化的操作,因此支持唯一值 labels.
def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    # 计算logits和labels之间的交叉熵
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
    # 计算整个批次的平均交叉熵损失
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    # 把变量放入一个集合
    tf.add_to_collection('losses', cross_entropy_mean)
    # 总损失定义为交叉熵损失加上所有的权重衰减项(L2损失)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

_add_loss_summaries()中计算单个损失和总损失,并将指数移动平均应用于单个损失.
train()训练CIFAR-10模型,使用指数衰减学习率并对损失进行移动平均.最后采用滑动平均的方法更新参数,这样可以在评估过程中提升模型的性能.

    # 跟踪所有可训练变量的移动均值
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
  1. 模型预测部分
    inference()构建的CIFAR-10模型,依次由以下部分组成:
    卷积层1 (实现卷积)
    池化层 (max polling)
    lrn层 (局部响应归一化:增强大的抑制小的,增强泛化能力)
    卷积层2 (实现卷积)
    lrn层 (局部响应归一化:增强大的抑制小的,增强泛化能力)
    池化层 (max polling)
    全连接层3 (添加L2正则化约束,防止过拟合)
    全连接层4 (添加L2正则化约束,防止过拟合)
    线性层 ((WX+b) 进行线性变换以输出 logits)

线性层中不使用softmax,因为loss()函数中的tf.nn.sparse_softmax_cross_entropy_with_logits接受非稀疏的logits并在内部执行softmax以提高效率.

    # 线性层 (WX+b)
    with tf.variable_scope('softmax_linear') as scope:
        weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=None)
        # biases初始化为0
        biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0))
        # (WX+b) 进行线性变换以输出 logits
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
        # 汇总
        _activation_summary(softmax_linear)

在TensorBoard 可查看模型结构:
TensorFlow学习--CIFAR-10_第2张图片

cifar10_eval.py

cifar10_eval.py用于评估CIFAR-10模型的预测性能.
cifar10_train.py主要有两部分:

  • eval_once() 单次评估
  • evaluate()  评估CIFAR-10模型

cifar10_train.py周期性的在checkpoint文件中保存模型中的所有参数,但不对模型进行评估.cifar10_eval.py中的eval_once()函数使用checkpoint文件在另一部分数据集上测试预测性能.
cifar10_eval.py中的evaluate()函数利用cifar10.py中的inference() 函数进行重构模型.然后使用评估数据集(10000张图片)进行测试.


部分代码及注释

cifar10.py及注释:

#!/usr/bin/python
# coding:utf-8

# 建立CIFAR-10的模型
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import re
import sys
import tarfile

from six.moves import urllib
import tensorflow as tf
import cifar10_input

FLAGS = tf.app.flags.FLAGS
# 基本模型参数
tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', '/home/w/mycode/data/cifar10_data',
                           """Path to the CIFAR-10 data directory.""")
tf.app.flags.DEFINE_boolean('use_fp16', False,# 半精度浮点数
                            """Train the model using fp16.""")
# 描述CIFAR-10数据集的全局常量
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

# 描述训练过程的常量
MOVING_AVERAGE_DECAY = 0.9999     # 滑动平均衰减率
NUM_EPOCHS_PER_DECAY = 350.0      # 在学习速度衰退之后的Epochs
LEARNING_RATE_DECAY_FACTOR = 0.1  # 学习速率衰减因子
INITIAL_LEARNING_RATE = 0.1       # 初始学习率

# 如果模型使用多个GPU进行训练,则使用tower_name将所有Op名称加前缀以区分操作
# 可视化模型时从摘要名称中删除此前缀
TOWER_NAME = 'tower'
DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'

# 激活摘要创建助手
def _activation_summary(x):
    # 若多个GPU训练,则从名称中删除'tower_[0-9]/',利于TensorBoard显示
    tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
    # 提供激活直方图的summary
    tf.summary.histogram(tensor_name + '/activations', x)
    # 衡量激活稀疏性的summary
    tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))

# 创建存储在CPU内存上的变量(变量的名称,整数列表,变量的初始化程序)
def _variable_on_cpu(name, shape, initializer):
    with tf.device('/cpu:0'):
        dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
        var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
    return var

# 创建一个权重衰减的初始化变量(变量的名称,整数列表,截断高斯的标准差,加L2Loss权重衰减)
# 变量用截断正态分布初始化的.只有指定时才添加权重衰减
def _variable_with_weight_decay(name, shape, stddev, wd):
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    # 用截断正态分布进行初始化
    var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev,dtype=dtype))
    if wd is not None:
        # wd用于向losses添加L2正则化,防止过拟合,提高泛化能力
        weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
        # 把变量放入一个集合
        tf.add_to_collection('losses', weight_decay)
    return var


# -------------------------模型输入-----------------------------------
# 训练输入
# 返回:images:[batch_size, IMAGE_SIZE, IMAGE_SIZE, 3]; labels:[batch_size]
def distorted_inputs():
    if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')
    data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
    # 读入并增广数据
    images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size)
    if FLAGS.use_fp16:
        images = tf.cast(images, tf.float16)
        labels = tf.cast(labels, tf.float16)
    return images, labels

# 预测输入
# 返回:images:[batch_size, IMAGE_SIZE, IMAGE_SIZE, 3]; labels:[batch_size]
def inputs(eval_data):
    if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')
    data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
    # 图像预处理及输入
    images, labels = cifar10_input.inputs(eval_data=eval_data,data_dir=data_dir,batch_size=FLAGS.batch_size)
    if FLAGS.use_fp16:
        images = tf.cast(images, tf.float16)
        labels = tf.cast(labels, tf.float16)
    return images, labels
# -------------------------------------------------------------------


# -------------------------模型预测-----------------------------------
# 构建CIFAR-10模型
# 使用tf.get_variable()而不是tf.Variable()来实例化所有变量,以便跨多个GPU训练运行共享变量
# 若只在单个GPU上运行,则可通过tf.Variable()替换tf.get_variable()的所有实例来简化此功能
def inference(images):
    # 卷积层1
    with tf.variable_scope('conv1') as scope:
        # weight不进行L2正则化
        kernel = _variable_with_weight_decay('weights',shape=[5, 5, 3, 64],stddev=5e-2, wd=None)
        # 卷积
        conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
        # biases初始化为0
        biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
        pre_activation = tf.nn.bias_add(conv, biases)
        # 卷积层1的结果由ReLu激活
        conv1 = tf.nn.relu(pre_activation, name=scope.name)
        # 汇总
        _activation_summary(conv1)
    # 池化层1
    pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
    # lrn层1 局部响应归一化:增强大的抑制小的,增强泛化能力
    norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
    # 卷积层2
    with tf.variable_scope('conv2') as scope:
        # weight不进行L2正则化
        kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=None)
        conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
        # biases初始化为0.1
        biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
        pre_activation = tf.nn.bias_add(conv, biases)
        # 卷积层2的结果由ReLu激活
        conv2 = tf.nn.relu(pre_activation, name=scope.name)
        # 汇总
        _activation_summary(conv2)
    # lrn层2
    norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
    # 池化层2
    pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2')

    # 全连接层3
    with tf.variable_scope('local3') as scope:
        # 将样本转换为一维向量
        reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
        # 维数
        dim = reshape.get_shape()[1].value
        # 添加L2正则化约束,防止过拟合
        weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004)
        # biases初始化为0.1
        biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
        # ReLu激活
        local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
        _activation_summary(local3)

    # 全连接层4
    with tf.variable_scope('local4') as scope:
        # 添加L2正则化约束,防止过拟合
        weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004)
        # biases初始化为0.1
        biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
        # ReLu激活
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
        _activation_summary(local4)

    # 线性层
    # (WX+b)不使用softmax,因为tf.nn.sparse_softmax_cross_entropy_with_logits接受未缩放的logits并在内部执行softmax以提高效率
    with tf.variable_scope('softmax_linear') as scope:
        weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=None)
        # biases初始化为0
        biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0))
        # (WX+b) 进行线性变换以输出 logits
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
        # 汇总
        _activation_summary(softmax_linear)
    return softmax_linear
# -------------------------------------------------------------------


# -------------------------模型训练-----------------------------------
# 将L2损失添加到所有可训练变量
def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    # 计算logits和labels之间的交叉熵
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
    # 计算整个批次的平均交叉熵损失
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    # 把变量放入一个集合
    tf.add_to_collection('losses', cross_entropy_mean)
    # 总损失定义为交叉熵损失加上所有的权重衰减项(L2损失)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

# 添加损失的summary;计算所有单个损失的移动均值和总损失
def _add_loss_summaries(total_loss):
    # 指数移动平均
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    losses = tf.get_collection('losses')
    # 将指数移动平均应用于单个损失
    loss_averages_op = loss_averages.apply(losses + [total_loss])
    # 单个损失损失和全部损失的标量summary
    for l in losses + [total_loss]:
        # 将每个损失命名为raw,并将损失的移动平均命名为原始损失
        tf.summary.scalar(l.op.name + ' (raw)', l)
        tf.summary.scalar(l.op.name, loss_averages.average(l))
    return loss_averages_op

# 训练CIFAR-10模型
# 创建一个优化器并应用于所有可训练变量,为所有可训练变量添加移动均值(全部损失,训练步数)
def train(total_loss, global_step):
    # 影响学习率的变量
    num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
    decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
    # 指数衰减学习率
    lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR, staircase=True)
    tf.summary.scalar('learning_rate', lr)
    # 对总损失进行移动平均
    loss_averages_op = _add_loss_summaries(total_loss)
    # 计算梯度
    with tf.control_dependencies([loss_averages_op]):
        opt = tf.train.GradientDescentOptimizer(lr)
        grads = opt.compute_gradients(total_loss)
    # 应用处理过后的梯度
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
    # 为可训练变量添加直方图
    for var in tf.trainable_variables():
        tf.summary.histogram(var.op.name, var)
    # 为梯度添加直方图
    for grad, var in grads:
        if grad is not None:
            tf.summary.histogram(var.op.name + '/gradients', grad)
    # 跟踪所有可训练变量的移动均值
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    # 使用默认图形的包装器
    with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train')
    return train_op
# -------------------------------------------------------------------

# 下载并解压数据
def maybe_download_and_extract():
    dest_directory = FLAGS.data_dir
    if not os.path.exists(dest_directory):
        os.makedirs(dest_directory)
    filename = DATA_URL.split('/')[-1]
    filepath = os.path.join(dest_directory, filename)
    if not os.path.exists(filepath):
        def _progress(count, block_size, total_size):
            sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
              float(count * block_size) / float(total_size) * 100.0))
            sys.stdout.flush()
        filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
        print()
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin')
    if not os.path.exists(extracted_dir_path):
        tarfile.open(filepath, 'r:gz').extractall(dest_directory)

cifar10_input.py及注释:

#!/usr/bin/python
# coding:utf-8

# 读取本地CIFAR-10的二进制文件

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from six.moves import xrange
import tensorflow as tf

# 处理图像尺寸,与CIFAR原始图像大小32 x 32不同
IMAGE_SIZE = 24
# 全局常量
NUM_CLASSES = 10
# 训练实例个数
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
# 验证实例个数
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000

# 读取二进制CIFAR10数据(filename_queue:要读取的文件名)
def read_cifar10(filename_queue):
    class CIFAR10Record(object):
        pass
    result = CIFAR10Record()
    # CIFAR-10数据集中图像的尺寸
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # 每条记录都包含一个标签,后面跟着图像,每个记录都有固定的字节数
    record_bytes = label_bytes + image_bytes
    # 从文件输出固定长度的字段(每个图片的存储字节数是固定的)
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    # 返回reader生成的下一条记录(key, value pair)
    result.key, value = reader.read(filename_queue)
    # 将字符串转换为uint8类型的向量
    record_bytes = tf.decode_raw(value, tf.uint8)
    # 将标签从uint8转换为int32
    result.label = tf.cast(tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)
    # 标签之后的字节表示图像,将其从[depth*height*width]转换为[depth,height,width]
    depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes], [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
    # 从[depth,height,width]转换为[height,width,depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])
    return result

# 构建[images,labels]的队列
def _generate_image_and_label_batch(image, label, min_queue_examples, batch_size, shuffle):
    # 使用16个独立线程,16个线程被连续的安排在一个队列中
    # 每次在执行读取一个 batch_size数量的样本[images,labels]
    num_preprocess_threads = 16
    # 是否随机打乱队列
    if shuffle:
        # images:4D张量[batch_size, height, width, 3]; labels:[batch_size]大小的1D张量
        # 将队列中数据打乱后取出
        images, label_batch = tf.train.shuffle_batch(
            [image, label],
            batch_size=batch_size,                         # 每批次的图像数量
            num_threads=num_preprocess_threads,            # 入队tensor_list的线程数量
            capacity=min_queue_examples + 3 * batch_size,  # 队列中元素的最大数量
            min_after_dequeue=min_queue_examples)          # 提供批次示例的队列中保留的最小样本数
    else:
        # 将队列中数据按顺序取出
        images, label_batch = tf.train.batch(
            [image, label],
            batch_size=batch_size,                         # 从队列中提取的新批量大小
            num_threads=num_preprocess_threads,            # 排列“tensor”的线程数量
            capacity=min_queue_examples + 3 * batch_size)  # 队列中元素的最大数量
    # 在TensorBoard中显示训练图像
    tf.summary.image('images', images)
    return images, tf.reshape(label_batch, [batch_size])



# 读入并增广数据为训练构建输入(CIFAR-10数据的路径,每批次的图像数量)
# 返回值 images:[batch_size,IMAGE_SIZE,IMAGE_SIZE,3];labels:[batch_size]
def distorted_inputs(data_dir, batch_size):
    # 获取5个二进制文件所在路径
    filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)
    # 创建一个文件名的队列
    filename_queue = tf.train.string_input_producer(filenames)
    with tf.name_scope('data_augmentation'):
        # 读取文件名队列中的文件
        read_input = read_cifar10(filename_queue)
        # 转换张量类型
        reshaped_image = tf.cast(read_input.uint8image, tf.float32)
        height = IMAGE_SIZE
        width = IMAGE_SIZE
        # 随机裁剪[height, width]大小的图像
        distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
        # 随机水平翻转图像
        distorted_image = tf.image.random_flip_left_right(distorted_image)
        # 随机调整图像亮度与对比度(不可交换)
        distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
        distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
        # 减去均值除以方差,线性缩放为零均值的单位范数:白化/标准化处理
        float_image = tf.image.per_image_standardization(distorted_image)
        # 设置张量的形状
        float_image.set_shape([height, width, 3])
        read_input.label.set_shape([1])
        # 确保随机乱序具有良好的混合性能
        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)
        print ('Filling queue with %d CIFAR images before starting to train.'
               'This will take a few minutes.' % min_queue_examples)
    # 构建图像和标签的队列
    return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=True)


# 图像预处理并为CIFAR预测构建输入
# 输入:(指示是否应该使用训练或eval数据集,CIFAR-10数据的路径,每批次的图像数量)
# 输出:images:[batch_size, IMAGE_SIZE, IMAGE_SIZE, 3]; labels: [batch_size]
def inputs(eval_data, data_dir, batch_size):
    if not eval_data:
        filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
    else:
        filenames = [os.path.join(data_dir, 'test_batch.bin')]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file:' + f)
    with tf.name_scope('input'):
        # 创建一个生成要读取的文件名的队列
        filename_queue = tf.train.string_input_producer(filenames)
        # 阅读文件名队列中文件的示例
        read_input = read_cifar10(filename_queue)
        reshaped_image = tf.cast(read_input.uint8image, tf.float32)
        height = IMAGE_SIZE
        width = IMAGE_SIZE
        # 用于评估的图像处理
        # 在图像的中心裁剪[height, width]大小的图像,裁剪中央区域用于评估
        resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, height, width)
        # 减去平均值并除以像素的方差,保证数据均值为0,方差为1
        float_image = tf.image.per_image_standardization(resized_image)
        # 设置张量的形状
        float_image.set_shape([height, width, 3])
        read_input.label.set_shape([1])
        # 确保随机乱序具有良好的混合性能
        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue)
    # 通过建立一个示例队列来生成一批图像和标签
    return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)

cifar10_eval.py及注释

#!/usr/bin/python
# coding:utf-8

# 评估CIFAR-10模型的预测性能

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import math
import time
import numpy as np
import tensorflow as tf

import cifar10

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('eval_dir', '/tmp/cifar10_eval',
                           """Directory where to write event logs.""")
tf.app.flags.DEFINE_string('eval_data', 'test',
                           """Either 'test' or 'train_eval'.""")
tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/cifar10_train',
                           """Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
                            """How often to run the eval.""")
tf.app.flags.DEFINE_integer('num_examples', 10000,
                            """Number of examples to run.""")
tf.app.flags.DEFINE_boolean('run_once', False,
                         """Whether to run eval only once.""")
# 单次评估
def eval_once(saver, summary_writer, top_k_op, summary_op):
    with tf.Session() as sess:
        # checkpoint文件会记录保存信息,通过它可以定位最新保存的模型
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            # 从检查点恢复
            saver.restore(sess, ckpt.model_checkpoint_path)
            # 假设model_checkpoint_path为/my-favorite-path/cifar10_train/model.ckpt-0从中提取global_step
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
        else:
            print('No checkpoint file found')
            return
        # 启动队列协调器
        coord = tf.train.Coordinator()
        try:
            threads = []
            for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
                threads.extend(qr.create_threads(sess, coord=coord, daemon=True,start=True))
            num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
            # 统计正确预测的数量
            true_count = 0
            total_sample_count = num_iter * FLAGS.batch_size
            step = 0
            # 检查是否被请求停止
            while step < num_iter and not coord.should_stop():
                predictions = sess.run([top_k_op])
                true_count += np.sum(predictions)
                step += 1
            # 计算准确度 precision@1
            precision = true_count / total_sample_count
            print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
            summary = tf.Summary()
            summary.ParseFromString(sess.run(summary_op))
            summary.value.add(tag='Precision @ 1', simple_value=precision)
            summary_writer.add_summary(summary, global_step)
        # pylint: disable=broad-except
        except Exception as e:
            coord.request_stop(e)
        # 请求线程结束
        coord.request_stop()
        # 等待线程终止
        coord.join(threads, stop_grace_period_secs=10)

# 评估CIFAR-10
def evaluate():
    with tf.Graph().as_default() as g:
        # 获取CIFAR-10的图像和标签
        eval_data = FLAGS.eval_data == 'test'
        images, labels = cifar10.inputs(eval_data=eval_data)
        # 构建一个图表,用于计算推理模型中的logits预测
        logits = cifar10.inference(images)
        # 计算预测
        top_k_op = tf.nn.in_top_k(logits, labels, 1)
        # 为eval恢复学习变量的移动平均
        variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        # 创建一个saver对象,用于保存参数到文件中
        saver = tf.train.Saver(variables_to_restore)
        # 根据摘要TF集合构建摘要操作
        summary_op = tf.summary.merge_all()
        # 将Summary protocol buffers写入事件文件
        summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)
        while True:
            eval_once(saver, summary_writer, top_k_op, summary_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)

# pylint: disable=unused-argument
def main(argv=None):
    cifar10.maybe_download_and_extract()
    if tf.gfile.Exists(FLAGS.eval_dir):
        tf.gfile.DeleteRecursively(FLAGS.eval_dir)
    tf.gfile.MakeDirs(FLAGS.eval_dir)
    evaluate()

if __name__ == '__main__':
    tf.app.run()

你可能感兴趣的:(TensorFlow)