- MATLAB 基于图像处理的杂草识别技术
鱼弦
matlab图像处理计算机视觉
MATLAB基于图像处理的杂草识别技术1.系统介绍杂草识别是精准农业中的重要环节,基于图像处理的杂草识别技术利用计算机视觉和机器学习算法,自动识别田间杂草,为精准施药提供决策支持。本系统基于MATLAB实现杂草图像处理,包括图像预处理、特征提取、分类识别等模块。2.应用场景精准农业:自动识别田间杂草,实现精准施药,减少农药使用量。生态监测:监测农田杂草种类和分布,评估生态环境。植物保护:识别有害杂
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- 最新1区9+非肿瘤纯生信,逻辑清晰易懂,机器学习筛选关键基因的纯生信也可以发高水平期刊,抓紧上车!
生信小课堂
影响因子:9.186关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因2单个疾病结合免疫浸润,热点基因集,机器学习算法等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析4基于分型的非肿瘤生信分析5单细胞结合普通转录组生信分析目前非肿瘤生信发文的门槛较低,欢迎大家!研究概述:本研究首先使用R语言在三个基因表达数据集中找到
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- Python自动化机器学习平台库之mindsdb使用详解
概要MindsDB是一个开源的自动化机器学习平台,它通过SQL接口简化了机器学习模型的创建、训练和预测过程。该库的核心理念是将机器学习功能直接集成到数据库中,让开发者无需深入了解复杂的机器学习算法,就能够快速构建和部署预测模型。MindsDB支持多种数据源连接,包括MySQL、PostgreSQL、MongoDB等主流数据库,同时提供了丰富的PythonAPI接口,使得数据科学家和开发者能够在熟悉
- 堡垒机操作行为异常检测的机器学习算法应用
一、传统检测模式的困境与机器学习的破局价值在数字化转型浪潮中,堡垒机作为运维安全的核心防线,面临着操作行为复杂度激增与检测能力滞后的双重挑战。传统检测手段主要依赖静态规则库与统计模型,存在三大致命缺陷:规则固化与误报泛滥:某金融机构曾因规则库未及时更新,导致运维人员正常批量操作被误判为“暴力破解”,单日误报量超2000次,消耗安全团队60%的精力。动态行为适应性弱:微服务架构下,运维人员访问路径呈
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Python设置国内镜像教程
wh3933
python开发语言
####引言Python是一种广泛使用的高级编程语言,用于各种编程任务,从简单的脚本到复杂的机器学习算法。在安装Python包时,通常需要从Python包索引(PyPI)下载。由于网络原因,直接从PyPI下载可能速度较慢,因此,使用国内的镜像源可以显著提高下载速度。本文将详细介绍如何在Python中设置国内镜像。####文章目的本篇文章旨在指导用户如何将Python的包管理工具`pip`的默认源切
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- 机器学习算法_支持向量机
一、支持向量机支持向量机只能做二分类任务SVM全称支持向量机,即寻找到一个超平面使样本分成两类,且间隔最大硬间隔:如果样本线性可分,在所有样本分类都正确的情况下,寻找最大间隔;如果出现异常值或样本线性不可分,此时硬间隔无法实现软间隔:允许部分样本,在最大间隔之内,甚至在错误的一边,寻找最大间隔;目标是尽可能保持间隔宽阔和限制间隔违例之间寻找良好的平衡惩罚系数:通过惩罚系数来控制这个平衡,C值越小,
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 面了字节跳动的数据挖掘岗,感觉真的很难。。。
大模型爱好者社区
机器学习深度学习面试宝典数据挖掘人工智能数据分析算法面试
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对新手如何入门机器学习算法、该如何备战、面试常考点分享等热门话题进行了深入的讨论。基于社群的讨论,今天我整理了一个同学的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面40min【编程题】有两种数据,分别是被转发的用户和转发的
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- AppML 案例简介
沐知全栈开发
开发语言
AppML案例简介引言AppML,全称为“应用程序机器学习”,是一种将机器学习技术与移动应用开发相结合的技术框架。它旨在简化移动应用的机器学习功能集成,使得开发者无需深入了解复杂的机器学习算法,即可将强大的AI功能引入他们的应用中。本文将简要介绍AppML的一些成功案例,展示其在不同领域的应用和价值。AppML案例一:健康监测应用案例概述:一款名为“HealthMate”的健康监测应用利用AppM
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 机器学习算法-逻辑回归模型在交通领域的应用
是一个Bug
机器学习算法逻辑回归
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档逻辑回归模型在交通领域的应用:车流数量和平均速度之间的关系前言结果分析代码分析逻辑回归可视化:交通拥堵预测的动态建模过程一、交通数据生成与预处理二、逻辑回归核心算法实现三、动态可视化:决策边界的演变过程四、特征标准化与模型评估五、实验结果与模型解读六、拓展思考:逻辑回归的局限性结语:从代码到交通智能前言紧接上文的逻辑回归原理分析讲一讲
- LeRobot: 让机械臂接入大模型
小众AI
AI开源人工智能AI编程
HuggingFace推出的开源项目LeRobot引发了业界广泛关注。这一项目通过整合最先进的机器学习算法和便捷的开发工具链,为开发者提供了一个高效、易用的机器人AI开发平台,堪称机器人领域的“Transformer时刻”。LeRobot旨在为PyTorch中的真实机器人技术提供模型、数据集和工具。目标是降低机器人技术的准入门槛,以便每个人都可以从共享数据集和预训练模型中受益。LeRobot包含最
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f