有以下3种方法,minAreaRect就是将图像的有效点用一个矩形逼近,通过矩形的中心角计算偏转。存在目标图像过小就无效了。
2 PCA 计算主成份,算出角度,但是。存在目标图像过小就无效了。
3 DFT 貌似图小了,也可以看到频域的变化,可以进一步研究。
1 minAreaRect
//自动检测角度,只能针对背景简单的图来检测
//如果一个人手拿的纸文件是倾斜的,但整体是正向的,根本检测不出来
double getRotateDegreeWithSimpleBackGround(Mat img)
{
int w = img.cols;
int h = img.rows;
Mat resultColor, resultGray, whiteImage;
double whitePoints = filteredRed(img, resultGray, resultColor, whiteImage);
imshow("resultGray", resultGray);
vector
for (int x = 0; x < h; x++)
for (int y = 0; y < w; y++)
{
int P = resultGray.at
if (P == 0)
{
Point pt;
pt.x = x;
pt.y = y;
points.push_back(pt);
}
}
RotatedRect box = minAreaRect(Mat(points));
cout << box.angle << endl;
Mat NewDegreeImage;
if (box.angle < -45)box.angle += 90;
//旋转这块可以围绕那个中心左右转成功率高些
rotateImage1(img, NewDegreeImage, box.angle, 0);
imshow("NewDegreeImage", NewDegreeImage);
imshow("whiteImage", whiteImage);
return box.angle;
}
2 PCA方法
int getRotateDegreeUsingPCA(Mat src, Mat ibw)
{
// Load image
// Mat src = imread("pca_test1.jpg");
// Mat src = imread(argv[1]);
// Check if image is loaded successfully
if (!src.data || src.empty())
{
cout << "Problem loading image!!!" << endl;
return EXIT_FAILURE;
}
imshow("src", src);
// Convert image to grayscale
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
// Convert image to binary
Mat bw;
threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);
// Find all the contours in the thresholded image
vector
vector
//findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
findContours(bw, contours, hierarchy, RETR_LIST, CHAIN_APPROX_NONE);
for (size_t i = 0; i < contours.size(); ++i)
{
// Calculate the area of each contour
double area = contourArea(contours[i]);
// Ignore contours that are too small or too large
if (area < 1e2 || 1e5 < area) continue;
// Draw each contour only for visualisation purposes
drawContours(src, contours, static_cast
// Find the orientation of each shape
getOrientation(contours[i], src);
}
imshow("output", src);
// waitKey(0);
return 0;
}
3 DFT
//传入参数为灰度图
//图像必须足够大才会影响整体的DTE变换
double getRotateDegreeUsingDFT(Mat srcImg,Mat resultlImg)
{
#define GRAY_THRESH 100
#define HOUGH_VOTE 50
// const char* filename = "imageText.jpg";
//Mat srcImg = imread(filename,cv::IMREAD_GRAYSCALE);
if (srcImg.empty())
return -1;
imshow("source", srcImg);
Point center(srcImg.cols / 2, srcImg.rows / 2);
#ifdef DEGREE
//Rotate source image
Mat rotMatS = getRotationMatrix2D(center, DEGREE, 1.0);
warpAffine(srcImg, srcImg, rotMatS, srcImg.size(), 1, 0, Scalar(255, 255, 255));
imshow("RotatedSrc", srcImg);
//imwrite("imageText_R.jpg",srcImg);
#endif
//Expand image to an optimal size, for faster processing speed
//Set widths of borders in four directions
//If borderType==BORDER_CONSTANT, fill the borders with (0,0,0)
Mat padded;
int opWidth = getOptimalDFTSize(srcImg.rows);
int opHeight = getOptimalDFTSize(srcImg.cols);
copyMakeBorder(srcImg, padded, 0, opWidth - srcImg.rows, 0, opHeight - srcImg.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = { Mat_
Mat comImg;
//Merge into a double-channel image
merge(planes, 2, comImg);
//Use the same image as input and output,
//so that the results can fit in Mat well
dft(comImg, comImg);
//Compute the magnitude
//planes[0]=Re(DFT(I)), planes[1]=Im(DFT(I))
//magnitude=sqrt(Re^2+Im^2)
split(comImg, planes);
magnitude(planes[0], planes[1], planes[0]);
//Switch to logarithmic scale, for better visual results
//M2=log(1+M1)
Mat magMat = planes[0];
magMat += Scalar::all(1);
log(magMat, magMat);
//Crop the spectrum
//Width and height of magMat should be even, so that they can be divided by 2
//-2 is 11111110 in binary system, operator & make sure width and height are always even
magMat = magMat(Rect(0, 0, magMat.cols & -2, magMat.rows & -2));
//Rearrange the quadrants of Fourier image,
//so that the origin is at the center of image,
//and move the high frequency to the corners
int cx = magMat.cols / 2;
int cy = magMat.rows / 2;
Mat q0(magMat, Rect(0, 0, cx, cy));
Mat q1(magMat, Rect(0, cy, cx, cy));
Mat q2(magMat, Rect(cx, cy, cx, cy));
Mat q3(magMat, Rect(cx, 0, cx, cy));
Mat tmp;
q0.copyTo(tmp);
q2.copyTo(q0);
tmp.copyTo(q2);
q1.copyTo(tmp);
q3.copyTo(q1);
tmp.copyTo(q3);
//Normalize the magnitude to [0,1], then to[0,255]
normalize(magMat, magMat, 0, 1, cv::NORM_MINMAX);
Mat magImg(magMat.size(), CV_8UC1);
magMat.convertTo(magImg, CV_8UC1, 255, 0);
imshow("magnitude", magImg);
//imwrite("imageText_mag.jpg",magImg);
//Turn into binary image
threshold(magImg, magImg, GRAY_THRESH, 255, THRESH_BINARY);
imshow("mag_binary", magImg);
//imwrite("imageText_bin.jpg",magImg);
//Find lines with Hough Transformation
vector
float pi180 = (float)CV_PI / 720;
Mat linImg(magImg.size(), CV_8UC3);
HoughLines(magImg, lines, 1, pi180, HOUGH_VOTE, 0,5);
//HoughLinesP(dst, lines, 1, CV_PI / 720, 30, roiImage.rows / 3, 3);
int numLines = lines.size();
for (int l = 0; l < numLines; l++)
{
float rho = lines[l][0], theta = lines[l][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a * rho, y0 = b * rho;
pt1.x = cvRound(x0 + 1000 * (-b));
pt1.y = cvRound(y0 + 1000 * (a));
pt2.x = cvRound(x0 - 1000 * (-b));
pt2.y = cvRound(y0 - 1000 * (a));
line(linImg, pt1, pt2, Scalar(255, 0, 0), 3, 8, 0);
}
imshow("lines", linImg);
//imwrite("imageText_line.jpg",linImg);
if (lines.size() == 3) {
cout << "found three angels:" << endl;
cout << lines[0][1] * 180 / CV_PI << endl << lines[1][1] * 180 / CV_PI << endl << lines[2][1] * 180 / CV_PI << endl << endl;
}
//Find the proper angel from the three found angels
float angel = 0;
float piThresh = (float)CV_PI / 90;
float pi2 = CV_PI / 2;
for (int l = 0; l < numLines; l++)
{
float theta = lines[l][1];
if (abs(theta) < piThresh || abs(theta - pi2) < piThresh)
continue;
else {
angel = theta;
break;
}
}
//Calculate the rotation angel
//The image has to be square,
//so that the rotation angel can be calculate right
angel = angel < pi2 ? angel : angel - CV_PI;
if (angel != pi2) {
float angelT = srcImg.rows*tan(angel) / srcImg.cols;
angel = atan(angelT);
}
float angelD = angel * 180 / (float)CV_PI;
cout << "the rotation angel to be applied:" << endl << angelD << endl << endl;
//Rotate the image to recover
Mat rotMat = getRotationMatrix2D(center, angelD, 1.0);
Mat dstImg = Mat::ones(srcImg.size(), CV_8UC3);
warpAffine(srcImg, dstImg, rotMat, srcImg.size(), 1, 0, Scalar(255, 255, 255));
imshow("DFT旋转结果", dstImg);
//imwrite("imageText_D.jpg",dstImg);
resultlImg=dstImg;
//waitKey(0);
}