Object Detection(目标检测神文)----1

Object Detection(目标检测神文)

置顶 2018年08月21日 14:25:28 Mars_WH 阅读数:12695

目标检测神文,非常全而且持续在更新。转发自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html,如有侵权联系删除。
更新时间:
20190226

我会跟进原作者博客持续更新,加入自己对目标检测领域的一些新研究及论文解读。博客根据需求直接进行关键字搜索,例如2018,可找到最新论文。

 

文章目录

  • Papers
    • 损失函数
      • [CVPR2019] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
      • Deep Neural Networks for Object Detection
      • OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
    • R-CNN
      • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Fast R-CNN
      • Fast R-CNN
      • A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
    • Faster R-CNN
      • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
      • R-CNN minus R
      • Faster R-CNN in MXNet with distributed implementation and data parallelization
      • Contextual Priming and Feedback for Faster R-CNN
      • An Implementation of Faster RCNN with Study for Region Sampling
      • Interpretable R-CNN
      • [AAAI2019]Object Detection based on Region Decomposition and Assembly
    • Light-Head R-CNN
      • Light-Head R-CNN: In Defense of Two-Stage Object Detector
      • Cascade R-CNN: Delving into High Quality Object Detection
    • MultiBox
      • Scalable Object Detection using Deep Neural Networks
      • Scalable, High-Quality Object Detection
    • SPP-Net
      • Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
      • DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
      • Object Detectors Emerge in Deep Scene CNNs
      • segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
      • Object Detection Networks on Convolutional Feature Maps
      • Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
      • DeepBox: Learning Objectness with Convolutional Networks
    • MR-CNN
      • Object detection via a multi-region & semantic segmentation-aware CNN model
    • YOLO
      • You Only Look Once: Unified, Real-Time Object Detection
      • darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++
      • Start Training YOLO with Our Own Data
      • YOLO: Core ML versus MPSNNGraph
      • TensorFlow YOLO object detection on Android
      • Computer Vision in iOS – Object Detection
    • YOLOv2
      • YOLO9000: Better, Faster, Stronger
      • darknet_scripts
      • Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2
      • LightNet: Bringing pjreddie’s DarkNet out of the shadows
      • YOLO v2 Bounding Box Tool
    • YOLOv3
      • YOLOv3: An Incremental Improvement
      • YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers
      • AttentionNet: Aggregating Weak Directions for Accurate Object Detection
    • DenseBox
      • DenseBox: Unifying Landmark Localization with End to End Object Detection
    • SSD
      • SSD: Single Shot MultiBox Detector
    • DSSD
      • DSSD : Deconvolutional Single Shot Detector
      • Enhancement of SSD by concatenating feature maps for object detection
      • Context-aware Single-Shot Detector
      • Feature-Fused SSD: Fast Detection for Small Objects
    • FSSD
      • FSSD: Feature Fusion Single Shot Multibox Detector
      • Weaving Multi-scale Context for Single Shot Detector
    • ESSD
      • Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
      • Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection
      • MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects
    • Inside-Outside Net (ION)
      • Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
      • Adaptive Object Detection Using Adjacency and Zoom Prediction
      • G-CNN: an Iterative Grid Based Object Detector
    • Factors in Finetuning Deep Model for object detection
      • Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution
      • We don’t need no bounding-boxes: Training object class detectors using only human verification
      • HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
      • A MultiPath Network for Object Detection
    • CRAFT
      • CRAFT Objects from Images
    • OHEM
      • Training Region-based Object Detectors with Online Hard Example Mining
      • S-OHEM: Stratified Online Hard Example Mining for Object Detection
      • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers
    • R-FCN
      • R-FCN: Object Detection via Region-based Fully Convolutional Networks
      • R-FCN-3000 at 30fps: Decoupling Detection and Classification
      • Recycle deep features for better object detection
    • MS-CNN
      • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
      • Multi-stage Object Detection with Group Recursive Learning
      • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection
    • PVANET
      • PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
    • GBD-Net
      • Gated Bi-directional CNN for Object Detection
      • Crafting GBD-Net for Object Detection
      • StuffNet: Using ‘Stuff’ to Improve Object Detection
      • Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene
      • Hierarchical Object Detection with Deep Reinforcement Learning
      • Learning to detect and localize many objects from few examples
      • Speed/accuracy trade-offs for modern convolutional object detectors
      • SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
    • Feature Pyramid Network (FPN)
      • Feature Pyramid Networks for Object Detection
      • Action-Driven Object Detection with Top-Down Visual Attentions
      • Beyond Skip Connections: Top-Down Modulation for Object Detection
      • Wide-Residual-Inception Networks for Real-time Object Detection
      • Attentional Network for Visual Object Detection
      • Learning Chained Deep Features and Classifiers for Cascade in Object Detection
      • DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling
      • Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries
      • Spatial Memory for Context Reasoning in Object Detection
      • Accurate Single Stage Detector Using Recurrent Rolling Convolution
      • Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection
      • LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
      • Point Linking Network for Object Detection
      • Perceptual Generative Adversarial Networks for Small Object Detection
      • Few-shot Object Detection
      • Yes-Net: An effective Detector Based on Global Information
      • SMC Faster R-CNN: Toward a scene-specialized multi-object detector
      • Towards lightweight convolutional neural networks for object detection
      • RON: Reverse Connection with Objectness Prior Networks for Object Detection
      • Mimicking Very Efficient Network for Object Detection
      • Residual Features and Unified Prediction Network for Single Stage Detection
      • Deformable Part-based Fully Convolutional Network for Object Detection
      • Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors
      • Recurrent Scale Approximation for Object Detection in CNN
    • DSOD
      • DSOD: Learning Deeply Supervised Object Detectors from Scratch
      • Object Detection from Scratch with Deep Supervision
      • Focal Loss for Dense Object Detection
      • Focal Loss Dense Detector for Vehicle Surveillance
      • CoupleNet: Coupling Global Structure with Local Parts for Object Detection
      • Incremental Learning of Object Detectors without Catastrophic Forgetting
      • Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection
      • StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection
      • Dynamic Zoom-in Network for Fast Object Detection in Large Images
      • Zero-Annotation Object Detection with Web Knowledge Transfer
    • MegDet
      • MegDet: A Large Mini-Batch Object Detector
      • Single-Shot Refinement Neural Network for Object Detection
      • Receptive Field Block Net for Accurate and Fast Object Detection
      • An Analysis of Scale Invariance in Object Detection - SNIP
      • Feature Selective Networks for Object Detection
      • Learning a Rotation Invariant Detector with Rotatable Bounding Box
      • Scalable Object Detection for Stylized Objects
      • Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids
      • Deep Regionlets for Object Detection
      • Training and Testing Object Detectors with Virtual Images
      • Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video
      • Spot the Difference by Object Detection
      • Localization-Aware Active Learning for Object Detection
      • Object Detection with Mask-based Feature Encoding
      • LSTD: A Low-Shot Transfer Detector for Object Detection
      • Domain Adaptive Faster R-CNN for Object Detection in the Wild
      • Pseudo Mask Augmented Object Detection
      • Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
      • Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection
      • Learning Region Features for Object Detection
      • Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection
      • Object Detection for Comics using Manga109 Annotations
      • Task-Driven Super Resolution: Object Detection in Low-resolution Images
      • Transferring Common-Sense Knowledge for Object Detection
      • Multi-scale Location-aware Kernel Representation for Object Detection
      • Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
      • DetNet: A Backbone network for Object Detection
      • Robust Physical Adversarial Attack on Faster R-CNN Object Detector
      • AdvDetPatch: Attacking Object Detectors with Adversarial Patches
      • Attacking Object Detectors via Imperceptible Patches on Background
      • Physical Adversarial Examples for Object Detectors
      • Quantization Mimic: Towards Very Tiny CNN for Object Detection
      • Object detection at 200 Frames Per Second
      • Object Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic Images
      • SNIPER: Efficient Multi-Scale Training
      • Soft Sampling for Robust Object Detection
      • MetaAnchor: Learning to Detect Objects with Customized Anchors
      • Localization Recall Precision (LRP): A New Performance Metric for Object Detection
      • Auto-Context R-CNN
      • Pooling Pyramid Network for Object Detection
      • Modeling Visual Context is Key to Augmenting Object Detection Datasets
      • Dual Refinement Network for Single-Shot Object Detection
      • Acquisition of Localization Confidence for Accurate Object Detection
      • CornerNet: Detecting Objects as Paired Keypoints
      • Unsupervised Hard Example Mining from Videos for Improved Object Detection
      • SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection
      • A Survey of Modern Object Detection Literature using Deep Learning
      • Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages
      • Deep Feature Pyramid Reconfiguration for Object Detection
      • MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection
      • Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
      • Deep Learning for Generic Object Detection: A Survey
      • Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples
      • ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch
      • Fast and accurate object detection in high resolution 4K and 8K video using GPUs
      • Hybrid Knowledge Routed Modules for Large-scale Object Detection
      • Gradient Harmonized Single-stage Detector
      • M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
      • BAN: Focusing on Boundary Context for Object Detection
      • Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector
      • R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy
      • DeRPN: Taking a further step toward more general object detection
      • Fast Efficient Object Detection Using Selective Attention
      • Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects
      • Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects
      • Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
      • Grid R-CNN
      • Transferable Adversarial Attacks for Image and Video Object Detection
      • Anchor Box Optimization for Object Detection
      • AutoFocus: Efficient Multi-Scale Inference
      • Practical Adversarial Attack Against Object Detector
      • Learning Efficient Detector with Semi-supervised Adaptive Distillation
      • Scale-Aware Trident Networks for Object Detection
      • Region Proposal by Guided Anchoring
      • Consistent Optimization for Single-Shot Object Detection
      • Bottom-up Object Detection by Grouping Extreme and Center Points
      • A Single-shot Object Detector with Feature Aggragation and Enhancement
      • Bag of Freebies for Training Object Detection Neural Networks
    • Non-Maximum Suppression (NMS)
      • End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression
      • A convnet for non-maximum suppression
      • Soft-NMS – Improving Object Detection With One Line of Code
      • Learning non-maximum suppression
      • Relation Networks for Object Detection
      • Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes
      • Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
    • Adversarial Examples
      • Adversarial Examples that Fool Detectors
      • Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
    • Weakly Supervised Object Detection
      • Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection
      • Weakly supervised object detection using pseudo-strong labels
      • Saliency Guided End-to-End Learning for Weakly Supervised Object Detection
      • Visual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object Detection
    • Video Object Detection
      • Learning Object Class Detectors from Weakly Annotated Video
      • Analysing domain shift factors between videos and images for object detection
      • Video Object Recognition
      • Deep Learning for Saliency Prediction in Natural Video
      • T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
      • Object Detection from Video Tubelets with Convolutional Neural Networks
      • Object Detection in Videos with Tubelets and Multi-context Cues
      • Context Matters: Refining Object Detection in Video with Recurrent Neural Networks
      • CNN Based Object Detection in Large Video Images
      • Object Detection in Videos with Tubelet Proposal Networks
      • Flow-Guided Feature Aggregation for Video Object Detection
      • Video Object Detection using Faster R-CNN
      • Improving Context Modeling for Video Object Detection and Tracking
      • Temporal Dynamic Graph LSTM for Action-driven Video Object Detection
      • Mobile Video Object Detection with Temporally-Aware Feature Maps
      • Towards High Performance Video Object Detection
      • Impression Network for Video Object Detection
      • Spatial-Temporal Memory Networks for Video Object Detection
      • 3D-DETNet: a Single Stage Video-Based Vehicle Detector
      • Object Detection in Videos by Short and Long Range Object Linking
      • Object Detection in Video with Spatiotemporal Sampling Networks
      • Towards High Performance Video Object Detection for Mobiles
      • Optimizing Video Object Detection via a Scale-Time Lattice
      • Pack and Detect: Fast Object Detection in Videos Using Region-of-Interest Packing
      • Fast Object Detection in Compressed Video
      • Tube-CNN: Modeling temporal evolution of appearance for object detection in video
      • AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling
    • Object Detection on Mobile Devices
      • Pelee: A Real-Time Object Detection System on Mobile Devices
    • Object Detection in 3D
      • Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
      • Complex-YOLO: Real-time 3D Object Detection on Point Clouds
      • Focal Loss in 3D Object Detection
      • 3D Object Detection Using Scale Invariant and Feature Reweighting Networks
      • 3D Backbone Network for 3D Object Detection
    • Object Detection on RGB-D
      • Learning Rich Features from RGB-D Images for Object Detection and Segmentation
      • Differential Geometry Boosts Convolutional Neural Networks for Object Detection
      • A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation
    • Zero-Shot Object Detection
      • Zero-Shot Detection
      • Zero-Shot Object Detection
      • Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts
      • Zero-Shot Object Detection by Hybrid Region Embedding
    • Salient Object Detection
      • Best Deep Saliency Detection Models (CVPR 2016 & 2015)
      • Large-scale optimization of hierarchical features for saliency prediction in natural images
      • Predicting Eye Fixations using Convolutional Neural Networks
      • Saliency Detection by Multi-Context Deep Learning
      • DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection
      • SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
      • Shallow and Deep Convolutional Networks for Saliency Prediction
      • Recurrent Attentional Networks for Saliency Detection
      • Two-Stream Convolutional Networks for Dynamic Saliency Prediction
    • Unconstrained Salient Object Detection
      • Unconstrained Salient Object Detection via Proposal Subset Optimization
      • DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection
      • Salient Object Subitizing
      • Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection
      • Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs
      • Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection
      • A Deep Multi-Level Network for Saliency Prediction
      • Visual Saliency Detection Based on Multiscale Deep CNN Features
      • A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
      • Deeply supervised salient object detection with short connections
      • Weakly Supervised Top-down Salient Object Detection
      • SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
      • Visual Saliency Prediction Using a Mixture of Deep Neural Networks
      • A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network
      • Saliency Detection by Forward and Backward Cues in Deep-CNNs
      • Supervised Adversarial Networks for Image Saliency Detection
      • Group-wise Deep Co-saliency Detection
      • Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection
      • Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection
      • Learning Uncertain Convolutional Features for Accurate Saliency Detection
      • Deep Edge-Aware Saliency Detection
      • Self-explanatory Deep Salient Object Detection
      • PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection
      • DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets
      • Recurrently Aggregating Deep Features for Salient Object Detection
      • Deep saliency: What is learnt by a deep network about saliency?
      • Contrast-Oriented Deep Neural Networks for Salient Object Detection
      • Salient Object Detection by Lossless Feature Reflection
      • HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection
    • Video Saliency Detection
      • Deep Learning For Video Saliency Detection
      • Video Salient Object Detection Using Spatiotemporal Deep Features
      • Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM
    • Visual Relationship Detection
      • Visual Relationship Detection with Language Priors
      • ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection
      • Visual Translation Embedding Network for Visual Relation Detection
      • Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection
      • Detecting Visual Relationships with Deep Relational Networks
      • Identifying Spatial Relations in Images using Convolutional Neural Networks
      • PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN
      • Natural Language Guided Visual Relationship Detection
      • Detecting Visual Relationships Using Box Attention
      • Google AI Open Images - Visual Relationship Track
      • Context-Dependent Diffusion Network for Visual Relationship Detection
      • A Problem Reduction Approach for Visual Relationships Detection
    • Face Deteciton
      • Multi-view Face Detection Using Deep Convolutional Neural Networks
      • From Facial Parts Responses to Face Detection: A Deep Learning Approach
      • Compact Convolutional Neural Network Cascade for Face Detection
      • Face Detection with End-to-End Integration of a ConvNet and a 3D Model
      • CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection
      • Towards a Deep Learning Framework for Unconstrained Face Detection
      • Supervised Transformer Network for Efficient Face Detection
      • UnitBox: An Advanced Object Detection Network
      • Bootstrapping Face Detection with Hard Negative Examples
      • Grid Loss: Detecting Occluded Faces
      • A Multi-Scale Cascade Fully Convolutional Network Face Detector
    • MTCNN
      • Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
      • Face Detection using Deep Learning: An Improved Faster RCNN Approach
      • Faceness-Net: Face Detection through Deep Facial Part Responses
      • Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”
      • End-To-End Face Detection and Recognition
      • Face R-CNN
      • Face Detection through Scale-Friendly Deep Convolutional Networks
      • Scale-Aware Face Detection
      • Detecting Faces Using Inside Cascaded Contextual CNN
      • Multi-Branch Fully Convolutional Network for Face Detection
      • SSH: Single Stage Headless Face Detector
      • Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container
      • FaceBoxes: A CPU Real-time Face Detector with High Accuracy
      • S3FD: Single Shot Scale-invariant Face Detector
      • Detecting Faces Using Region-based Fully Convolutional Networks
      • AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection
      • Face Attention Network: An effective Face Detector for the Occluded Faces
      • Feature Agglomeration Networks for Single Stage Face Detection
      • Face Detection Using Improved Faster RCNN
      • PyramidBox: A Context-assisted Single Shot Face Detector
      • A Fast Face Detection Method via Convolutional Neural Network
      • Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy
      • Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks
      • SFace: An Efficient Network for Face Detection in Large Scale Variations
      • Survey of Face Detection on Low-quality Images
      • Anchor Cascade for Efficient Face Detection
      • Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization
      • Selective Refinement Network for High Performance Face Detection
      • DSFD: Dual Shot Face Detector
      • Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision
      • FA-RPN: Floating Region Proposals for Face Detection
      • Robust and High Performance Face Detector
      • DAFE-FD: Density Aware Feature Enrichment for Face Detection
      • Improved Selective Refinement Network for Face Detection
      • Revisiting a single-stage method for face detection
    • Detect Small Faces
      • Finding Tiny Faces
      • Detecting and counting tiny faces
      • Seeing Small Faces from Robust Anchor’s Perspective
      • Face-MagNet: Magnifying Feature Maps to Detect Small Faces
      • Robust Face Detection via Learning Small Faces on Hard Images
      • SFA: Small Faces Attention Face Detector
    • Person Head Detection
      • Context-aware CNNs for person head detection
      • Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture
      • A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications
      • FCHD: A fast and accurate head detector
    • Pedestrian Detection / People Detection
      • Pedestrian Detection aided by Deep Learning Semantic Tasks
      • Deep Learning Strong Parts for Pedestrian Detection
      • Taking a Deeper Look at Pedestrians
      • Convolutional Channel Features
      • End-to-end people detection in crowded scenes
      • Learning Complexity-Aware Cascades for Deep Pedestrian Detection
      • Deep convolutional neural networks for pedestrian detection
      • Scale-aware Fast R-CNN for Pedestrian Detection
      • New algorithm improves speed and accuracy of pedestrian detection
      • Pushing the Limits of Deep CNNs for Pedestrian Detection
      • A Real-Time Deep Learning Pedestrian Detector for Robot Navigation
      • A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation
      • Is Faster R-CNN Doing Well for Pedestrian Detection?
      • Unsupervised Deep Domain Adaptation for Pedestrian Detection
      • Reduced Memory Region Based Deep Convolutional Neural Network Detection
      • Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
      • Detecting People in Artwork with CNNs
      • Multispectral Deep Neural Networks for Pedestrian Detection
      • Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection
      • Deep Multi-camera People Detection
      • Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters
      • What Can Help Pedestrian Detection?
      • Illuminating Pedestrians via Simultaneous Detection & Segmentation
      • Rotational Rectification Network for Robust Pedestrian Detection
      • STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos
      • Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy
      • Repulsion Loss: Detecting Pedestrians in a Crowd
      • Aggregated Channels Network for Real-Time Pedestrian Detection
      • Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection
      • Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection
      • Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond
      • PCN: Part and Context Information for Pedestrian Detection with CNNs
      • Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation
      • Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd
      • Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation
      • Pedestrian Detection with Autoregressive Network Phases
      • The Cross-Modality Disparity Problem in Multispectral Pedestrian Detection
    • Vehicle Detection
      • DAVE: A Unified Framework for Fast Vehicle Detection and Annotation
      • Evolving Boxes for fast Vehicle Detection
      • Fine-Grained Car Detection for Visual Census Estimation
      • SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection
      • Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data
      • Domain Randomization for Scene-Specific Car Detection and Pose Estimation
      • ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery
    • Traffic-Sign Detection
      • Traffic-Sign Detection and Classification in the Wild
      • Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data
      • Detecting Small Signs from Large Images
      • Localized Traffic Sign Detection with Multi-scale Deconvolution Networks
      • Detecting Traffic Lights by Single Shot Detection
      • A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection
    • Skeleton Detection
      • Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs
      • DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images
      • SRN: Side-output Residual Network for Object Symmetry Detection in the Wild
      • Hi-Fi: Hierarchical Feature Integration for Skeleton Detection
    • Fruit Detection
      • Deep Fruit Detection in Orchards
      • Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
    • Shadow Detection
      • Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network
      • A+D-Net: Shadow Detection with Adversarial Shadow Attenuation
      • Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal
      • Direction-aware Spatial Context Features for Shadow Detection
      • Direction-aware Spatial Context Features for Shadow Detection and Removal
    • Others Detection
      • Deep Deformation Network for Object Landmark Localization
      • Fashion Landmark Detection in the Wild
      • Deep Learning for Fast and Accurate Fashion Item Detection
      • OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)
      • Selfie Detection by Synergy-Constraint Based Convolutional Neural Network
      • Associative Embedding:End-to-End Learning for Joint Detection and Grouping
      • Deep Cuboid Detection: Beyond 2D Bounding Boxes
      • Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
      • Deep Learning Logo Detection with Data Expansion by Synthesising Context
      • Scalable Deep Learning Logo Detection
      • Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks
      • Automatic Handgun Detection Alarm in Videos Using Deep Learning
      • Objects as context for part detection
      • Using Deep Networks for Drone Detection
      • Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
      • Target Driven Instance Detection
      • DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion
      • VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition
      • Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants
      • ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos
      • Deep Learning Object Detection Methods for Ecological Camera Trap Data
      • EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
      • Towards End-to-End Lane Detection: an Instance Segmentation Approach
      • iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection
      • Densely Supervised Grasp Detector (DSGD)
    • Object Proposal
      • DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers
      • Scale-aware Pixel-wise Object Proposal Networks
      • Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
      • Learning to Segment Object Proposals via Recursive Neural Networks
      • Learning Detection with Diverse Proposals
      • ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
      • Improving Small Object Proposals for Company Logo Detection
      • Open Logo Detection Challenge
      • AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects
    • Localization
      • Beyond Bounding Boxes: Precise Localization of Objects in Images
      • Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
      • Weakly Supervised Object Localization Using Size Estimates
      • Active Object Localization with Deep Reinforcement Learning
      • Localizing objects using referring expressions
      • LocNet: Improving Localization Accuracy for Object Detection
      • Learning Deep Features for Discriminative Localization
      • ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
      • Ensemble of Part Detectors for Simultaneous Classification and Localization
      • STNet: Selective Tuning of Convolutional Networks for Object Localization
      • Soft Proposal Networks for Weakly Supervised Object Localization
      • Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN
    • Tutorials / Talks
      • Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
      • Towards Good Practices for Recognition & Detection
      • Work in progress: Improving object detection and instance segmentation for small objects
      • Object Detection with Deep Learning: A Review
    • Projects
      • Detectron
      • TensorBox: a simple framework for training neural networks to detect objects in images
      • Object detection in torch: Implementation of some object detection frameworks in torch
      • Using DIGITS to train an Object Detection network
      • FCN-MultiBox Detector
      • KittiBox: A car detection model implemented in Tensorflow.
      • Deformable Convolutional Networks + MST + Soft-NMS
      • How to Build a Real-time Hand-Detector using Neural Networks (SSD) on Tensorflow
      • Metrics for object detection
      • MobileNetv2-SSDLite
    • Leaderboard
      • Detection Results: VOC2012
    • Tools
      • BeaverDam: Video annotation tool for deep learning training labels
    • Blogs
      • Convolutional Neural Networks for Object Detection
      • Introducing automatic object detection to visual search (Pinterest)
      • Deep Learning for Object Detection with DIGITS
      • Analyzing The Papers Behind Facebook’s Computer Vision Approach
      • Easily Create High Quality Object Detectors with Deep Learning
      • How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
      • Object Detection in Satellite Imagery, a Low Overhead Approach
      • You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
      • Faster R-CNN Pedestrian and Car Detection
      • Small U-Net for vehicle detection
      • Region of interest pooling explained
      • Supercharge your Computer Vision models with the TensorFlow Object Detection API
      • Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning
      • One-shot object detection
      • An overview of object detection: one-stage methods
    • deep learning object detection

 

Method backbone test size VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat           24.3%    
R-CNN AlexNet   58.5% 53.7% 53.3% 31.4%    
R-CNN VGG17   66.0%          
SPP_net ZF-5   54.2%     31.84%    
DeepID-Net     64.1%     50.3%    
NoC     73.3%   68.8%      
Fast-RCNN VGG16   70.0% 68.8% 68.4%   19.7%(@[0.5-0.95]), 35.9%(@0.5)  
MR-CNN     78.2%   73.9%      
Faster-RCNN VGG16   78.8%   75.9%   21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN ResNet101   85.6%   83.8%   37.4%(@[0.5-0.95]), 59.0%(@0.5)  
YOLO     63.4%   57.9%     45 fps
YOLO VGG-16   66.4%         21 fps
YOLOv2   448x448 78.6%   73.4%   21.6%(@[0.5-0.95]), 44.0%(@0.5) 40 fps
SSD VGG16 300x300 77.2%   75.8%   25.1%(@[0.5-0.95]), 43.1%(@0.5) 46 fps
SSD VGG16 512x512 79.8%   78.5%   28.8%(@[0.5-0.95]), 48.5%(@0.5) 19 fps
SSD ResNet101 300x300         28.0%(@[0.5-0.95]) 16 fps
SSD ResNet101 512x512         31.2%(@[0.5-0.95]) 8 fps
DSSD ResNet101 300x300         28.0%(@[0.5-0.95]) 8 fps
DSSD ResNet101 500x500         33.2%(@[0.5-0.95]) 6 fps
ION     79.2%   76.4%      
CRAFT     75.7%   71.3% 48.5%    
OHEM     78.9%   76.3%   25.5%(@[0.5-0.95]), 45.9%(@0.5)  
R-FCN ResNet50   77.4%         0.12sec(K40), 0.09sec(TitianX)
R-FCN ResNet101   79.5%         0.17sec(K40), 0.12sec(TitianX)
R-FCN(ms train) ResNet101   83.6%   82.0%   31.5%(@[0.5-0.95]), 53.2%(@0.5)  
PVANet 9.0     84.9%   84.2%     750ms(CPU), 46ms(TitianX)
RetinaNet ResNet101-FPN              
Light-Head R-CNN Xception* 800/1200         31.5%@[0.5:0.95] 95 fps
Light-Head R-CNN Xception* 700/1100         30.7%@[0.5:0.95] 102 fps
STDN     80.9 (07+12)          
RefineDet     83.8 (07+12)   83.5 (07++12)   41.8  
SNIP             45.7  
Relation-Network             32.5  
Cascade R-CNN             42.8  
MLKP     80.6 (07+12)   77.2 (07++12)   28.6  
Fitness-NMS             41.8  
RFBNet     82.2 (07+12)          
CornerNet             42.1  
PFPNet     84.1 (07+12)   83.7 (07++12)   39.4  
Pelee     70.9 (07+12)          
HKRM     78.8 (07+12)       37.8  
M2Det             44.2  
SIN     76.0 (07+12)   73.1 (07++12)   23.2  

Papers

你可能感兴趣的:(CNN,卷积神经网络)