SE Block (Sequeze and Excitation)

 

 

SE Block (Sequeze and Excitation)_第1张图片

 

看senet block的代码,明白如何实现

def Squeeze_excitation_layer(self, input_x, out_dim, ratio, layer_name):
    with tf.name_scope(layer_name) :
        squeeze = Global_Average_Pooling(input_x)#对每个通道取全局最大化
        excitation = Fully_connected(squeeze, units=out_dim / ratio, layer_name=layer_name+'_fully_connected1')
        excitation = Relu(excitation)
        #为什么用两个全卷基层, 而且为什么卷基层的unit不同?
        excitation = Fully_connected(excitation, units=out_dim, layer_name=layer_name+'_fully_connected2')
        excitation = Sigmoid(excitation)
        excitation = tf.reshape(excitation, [-1,1,1,out_dim])
        scale = input_x * excitation
        return scale

 为什么用两个全卷基层, 而且为什么卷基层的unit不同?

(1) 用两个全连接层,因为一个全连接层无法同时应用relu和sigmoid两个非线性函数,但是两者又缺一不可。

(2) 为了减少参数,所以设置了r比率。(论文中取的是16)

SE Block (Sequeze and Excitation)_第2张图片

作者在准确率和参数量之间取了一个折中,r = 16.

 

 

参考

(1)[DL-架构-ResNet系] 007 SENet https://zhuanlan.zhihu.com/p/29708106

(2)【深度学习从入门到放弃】Squeeze-and-Excitation Networks https://zhuanlan.zhihu.com/p/29812913

你可能感兴趣的:(论文学习)