1. 块设备概念:块设备是指只能以块为单位进行访问的设备,块的大小一般是512个字节的整数倍。常见的块设备包括硬件,SD卡,光盘等。
上边是通过一个编写好的块设备驱动,然后安装块设备驱动以及一些相关操作来体会块设备驱动!(此处省略)
2. 块设备驱动的系统架构
2.1 系统架构---VFS
VFS是对各种具体文件系统的一种封装,用户程序访问文件提供统一的接口。
2.2 系统架构---Cache
当用户发起文件访问请求的时候,首先回到Disk Cache中寻址文件是否被缓存了,如果在Cache,则直接从cache中读取。如果数据不在缓存中,就必须要到具体的文件系统中读取数据了。
2.3 Mapping Layer
2.3.1 首先确定文件系统的block size,然后计算所请求的 数据包含多少个block.
2.3.2 调用具体文件系统的函数来访问文件的inode结构,确定所请求的数据在磁盘上的地址。
2.4 Generic Block Layer
Linux内核把块设备看做是由若干个扇区组成的数据空间,上层的读写请求在通用块层被构造成一个或多个bio结构。
2.5 I/O Scheduler Layer I/O调度层负责采用某种算法(如:电梯调度算法)将I/O操作进行排序。
电梯调度算法的基本原则:如果电梯现在朝上运动,如果当前楼层的上方和下方都有请求,则先响应所有上方的请求,然后才向下响应下方的请求;如果电梯向下运动,则刚好相反。
2.6 块设备驱动
在块系统架构的最底层,由块设备驱动根据排序好的请求,对硬件进行数据访问。
块设备驱动流程分析:
1.6 注册块设备---add_disk
2. 实现读写请求函数
2.1 取出一个要处理的请求---blk_fetch_request
2.2 更具请求里的信息访问硬件,获取数据
2.3 利用__blk_end_request_cur判读请求队列里是否还有剩余的请求要处理,如果有按照1、2来处理
一个最简单的块设备驱动程序:
#include
#include
#include
#include
#include
#include /* printk() */
#include /* kmalloc() */
#include /* everything... */
#include /* error codes */
#include
#include /* size_t */
#include /* O_ACCMODE */
#include /* HDIO_GETGEO */
#include
#include
#include
#include
#include /* invalidate_bdev */
#include
static int major = 0;
static int sect_size = 512;//定义每个扇区的大小为512字节
static int nsectors = 1024;//扇区数目
struct blk_dev{
int size;
u8 *data;
struct request_queue *queue;
struct gendisk *gd;
};
struct blk_dev *dev;
static struct block_device_operations blk_ops = {
.owner = THIS_MODULE,
};
//static void blk_transfer(struct blk_dev *dev, unsigned long sector,unsigned long nsect, char *buffer, int write)
static void blk_transfer(struct blk_dev *dev, unsigned long sector, unsigned long nsect, char *buffer, int write)
{
unsigned long offset = sector * sect_size;
unsigned long nbytes = nsect * sector;
if(write)//如果是写操作 将用户空间的数据写到磁盘上去
memcpy(dev->data + offset, buffer, nbytes);
else
memcpy(buffer, dev->data + offset, nbytes);
}
static void blk_request(struct request_queue *q)
{
struct request *req;//保存取出的请求
req = blk_fetch_request(q);//从请求队列中取出一个请求
while(req != NULL)
{
//处理该请求
//操作的起始扇区 请求操作扇区的数目 数据读出来放到哪里, 或写数据来自哪里
blk_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req));
//blk_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req));
if( !__blk_end_request_cur(req, 0) )//判读如果不是最后一个请求
req = blk_fetch_request(q);//再去取一个请求
}
}
void setup_device(void)
{
dev->size = nsectors * sect_size;
dev->data = vmalloc(dev->size);
dev->queue = blk_init_queue(blk_request, NULL);//初始化请求队列
blk_queue_logical_block_size(dev->queue, sect_size);//设置扇区尺寸
dev->gd = alloc_disk(1);//分配块设备结构
dev->gd->major = major;
dev->gd->first_minor = 0;
dev->gd->fops = &blk_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
sprintf(dev->gd->disk_name, "simp_blk%d", 0);//设备名为simp_blk0
set_capacity(dev->gd, nsectors);//设置扇区数
add_disk(dev->gd);
}
int blk_init(void)
{
//两个参数 第一个参数为0表示为动态分配设备号 返回主设备号
major = register_blkdev(0, "blk");//注册块设备驱动程序
if( major <= 0 )
{
printk("register blk dev fail!\n");
return -EBUSY;
}
dev = kmalloc(sizeof(struct blk_dev),GFP_KERNEL);
setup_device();
return 0;
}
void blk_exit(void)
{
del_gendisk(dev->gd);
blk_cleanup_queue(dev->queue);
vfree(dev->data);
unregister_blkdev(major, "blk");
kfree(dev);
}
module_init(blk_init);
module_exit(blk_exit);
这个是可以运行的:
#include
#include
#include
#include
#include /* printk() */
#include /* kmalloc() */
#include /* everything... */
#include /* error codes */
#include
#include /* size_t */
#include /* O_ACCMODE */
#include /* HDIO_GETGEO */
#include
#include
#include
#include
#include /* invalidate_bdev */
#include
MODULE_LICENSE("Dual BSD/GPL");
static int major = 0;
static int sect_size = 512;
static int nsectors = 1024;
/*
* The internal representation of our device.
*/
struct blk_dev{
int size; /* Device size in sectors */
u8 *data; /* The data array */
struct request_queue *queue; /* The device request queue */
struct gendisk *gd; /* The gendisk structure */
};
struct blk_dev *dev;
/*
* Handle an I/O request, in sectors.
*/
static void blk_transfer(struct blk_dev *dev, unsigned long sector,
unsigned long nsect, char *buffer, int write)
{
unsigned long offset = sector*sect_size;
unsigned long nbytes = nsect*sect_size;
if ((offset + nbytes) > dev->size) {
printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);
return;
}
if (write)
memcpy(dev->data + offset, buffer, nbytes);
else
memcpy(buffer, dev->data + offset, nbytes);
}
/*
* The simple form of the request function.
*/
static void blk_request(struct request_queue *q)
{
struct request *req;
req = blk_fetch_request(q);
while (req != NULL) {
struct blk_dev *dev = req->rq_disk->private_data;
blk_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req));
if(!__blk_end_request_cur(req, 0))
{
req = blk_fetch_request(q);
}
}
}
/*
* Transfer a single BIO.
*/
static int blk_xfer_bio(struct blk_dev *dev, struct bio *bio)
{
int i;
struct bio_vec *bvec;
sector_t sector = bio->bi_sector;
/* Do each segment independently. */
bio_for_each_segment(bvec, bio, i) {
char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);
blk_transfer(dev, sector, bio_cur_bytes(bio)>>9 /* in sectors */,
buffer, bio_data_dir(bio) == WRITE);
sector += bio_cur_bytes(bio)>>9; /* in sectors */
__bio_kunmap_atomic(bio, KM_USER0);
}
return 0; /* Always "succeed" */
}
/*
* Transfer a full request.
*/
static int blk_xfer_request(struct blk_dev *dev, struct request *req)
{
struct bio *bio;
int nsect = 0;
__rq_for_each_bio(bio, req) {
blk_xfer_bio(dev, bio);
nsect += bio->bi_size/sect_size;
}
return nsect;
}
/*
* The device operations structure.
*/
static struct block_device_operations blk_ops = {
.owner = THIS_MODULE,
};
/*
* Set up our internal device.
*/
static void setup_device()
{
/*
* Get some memory.
*/
dev->size = nsectors*sect_size;
dev->data = vmalloc(dev->size);
if (dev->data == NULL) {
printk (KERN_NOTICE "vmalloc failure.\n");
return;
}
dev->queue = blk_init_queue(blk_request, NULL);
if (dev->queue == NULL)
goto out_vfree;
blk_queue_logical_block_size(dev->queue, sect_size);
dev->queue->queuedata = dev;
/*
* And the gendisk structure.
*/
dev->gd = alloc_disk(1);
if (! dev->gd) {
printk (KERN_NOTICE "alloc_disk failure\n");
goto out_vfree;
}
dev->gd->major = major;
dev->gd->first_minor = 0;
dev->gd->fops = &blk_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
sprintf (dev->gd->disk_name, "simp_blk%d", 0);
set_capacity(dev->gd, nsectors*(sect_size/sect_size));
add_disk(dev->gd);
return;
out_vfree:
if (dev->data)
vfree(dev->data);
}
static int __init blk_init(void)
{
/*
* Get registered.
*/
major = register_blkdev(major, "blk");
if (major <= 0) {
printk(KERN_WARNING "blk: unable to get major number\n");
return -EBUSY;
}
dev = kmalloc(sizeof(struct blk_dev), GFP_KERNEL);
if (dev == NULL)
goto out_unregister;
setup_device();
return 0;
out_unregister:
unregister_blkdev(major, "sbd");
return -ENOMEM;
}
static void blk_exit(void)
{
if (dev->gd) {
del_gendisk(dev->gd);
put_disk(dev->gd);
}
if (dev->queue)
blk_cleanup_queue(dev->queue);
if (dev->data)
vfree(dev->data);
unregister_blkdev(major, "blk");
kfree(dev);
}
module_init(blk_init);
module_exit(blk_exit);
makefile:
ifneq ($(KERNELRELEASE),)
obj-m := simple-blk.o
else
KDIR := /lib/modules/2.6.32-279.el6.i686/build
all:
make -C $(KDIR) M=$(PWD) modules
clean:
rm -f *.ko *.o *.mod.o *.mod.c *.symvers
endif
这个块设备驱动的测试上面也有步骤!重点是理解块设备驱动的大体流程!对块设备驱动又个大体印象!
下面来介绍一个和下面即将要出场的flash驱动相关的知识!
MTD
MTD设备体验:Flash在嵌入式系统中是必不可少,它是bootloader、linux内核和文件系统的最佳载体。在linux内核中引入了MTD子系统为NOR FLASH和NAND FLASH设备提供统一的接口,从而使得FLASH驱动的设计大为简化。
块设备驱动系统架构:
先过一遍流程!额 ,徒手撸驱动代码这难度还真不是一般大!后边边学边提高吧!