Netty 粘包 拆包 | 史上最全解读

Netty 粘包/半包原理与拆包实战(史上最全)

疯狂创客圈 Java 聊天程序【 亿级流量】实战系列之13 【博客园 总入口 】


本文的源码工程:Netty 粘包/半包原理与拆包实战 源码

  • 本实例是《Netty 粘包/半包原理与拆包实战》 一文的源代码工程。

写在前面

大家好,我是作者尼恩。

为了完成了一个高性能的 Java 聊天程序,在前面的文章中,尼恩已经再一次的进行了通讯协议的重新选择。

这就是:放弃了大家非常熟悉的json 格式,选择了性能更佳的 Protobuf协议

在上一篇文章中,并且完成了Netty 和 Protobuf协议整合实战。

具体的文章为: Netty+Protobuf 整合一:实战案例,带源码

另外,专门开出一篇文章,介绍了通讯消息数据包的几条设计准则。

具体的文章为: Netty +Protobuf 整合二:protobuf 消息通讯协议设计的几个准则

在开始聊天器实战开发之前,还有一个非常基础的问题,需要解决:这就是通讯的粘包和半包问题。

什么是粘包和半包?

先从数据包的发送和接收开始讲起。

我们知道, Netty 发送和读取数据的单位,可以形象的使用 ByteBuf 来充当。

每一次发送,就是向Channel 写入一个 ByteBuf ;每一次读取,就是从 Channel 读到一个 ByteBuf 。

发送一次数据,举例如下:

channel.writeAndFlush(buffer);

读取一次数据,举例如下:

public void channelRead(ChannelHandlerContext ctx, Object msg)
{
		ByteBuf byteBuf = (ByteBuf) msg;
   //....
}

我们的理想是:发送端每发送一个buffer,接收端就能接收到一个一模一样的buffer。

然而,理想很丰满,现实很骨感。

在实际的通讯过程中,并没有大家预料的那么完美。

一种意料之外的情况,如期而至。这就是粘包和半包。

那么,什么是粘包和半包?

粘包和半包定义如下:

  1. 粘包和半包,指的都不是一次是正常的 ByteBuf 缓存区接收。

  2. 粘包,就是接收端读取的时候,多个发送过来的 ByteBuf “粘”在了一起。

    换句话说,接收端读取一次的 ByteBuf ,读到了多个发送端的 ByteBuf ,是为粘包。

  3. 半包,就是接收端将一个发送端的ByteBuf “拆”开了,形成一个破碎的包,我们定义这种 ByteBuf 为半包。

    换句话说,接收端读取一次的 ByteBuf ,读到了发送端的一个 ByteBuf的一部分,是为半包。

粘包和半包 图解

上面的理论比较抽象,下面用一幅图来形象说明。

下图中,发送端发出4个数据包,接受端也接受到了4个数据包。但是,通讯过程中,接收端出现了 粘包和半包。
Netty 粘包 拆包 | 史上最全解读_第1张图片

接收端收到的第一个包,正常。

接收端收到的第二个包,就是一个粘包。 将发送端的第二个包、第三个包,粘在一起了。

接收端收到的第三个包,第四个包,就是半包。将发送端的的第四个包,分开成了两个了。

半包的实验

由于在前文 Netty+Protobuf 整合一:实战案例,带源码 的源码中,没有看到异常的现象。是因为代码屏蔽了半包的输出,所以看到的都是正常的数据包。

稍微调整一下,在前文解码器的代码,加上半包的提示信息输出,就可以看到半包的提示。

示意图如下:
Netty 粘包 拆包 | 史上最全解读_第2张图片

调整过的半包警告的代码,如下:

/**
 * 解码器
 * 
 */
public class ProtobufDecoder extends ByteToMessageDecoder {
    //....
   protected void decode(ChannelHandlerContext ctx, ByteBuf in,
         List out) throws Exception {
      //...

      // 读取传送过来的消息的长度。
      int length = in.readUnsignedShort();

      //...
      if (length > in.readableBytes()) {
         // 读到的半包
         // ...
         LOG.error("告警:读到的消息体长度小于传送过来的消息长度");
         return;
      }
     //...  省略了正常包的处理
   }
}
 
  

具体的源码,请参见本文的源码工程:Netty 粘包/半包原理与拆包实战 源码

源码中,客户端向服务器循环发了1000个数据包,服务器接收端,出现了很多的半包的场景。

可以下载源码,进行实验。

实验时,服务器端运行 ChatServerApp 的main方法,客户端运行 ChatClientApp 的main方法,就可以看到上面图片中所示的半包的结果。

粘包和半包更全实验

上面的实例,只能看到半包的结果,看不到粘包的结果。

为了看到粘包的场景,这里,不使用protobuf 协议,直接使用缓冲区进行读写通讯,设计了一个的简单的演示实验案例。

案例已经设计好,可以下载源码,进行实验。

运行实例,不仅可以看到半包的提示信息输出,而且可以看到粘包的提示信息输出,示意图如下:

Netty 粘包 拆包 | 史上最全解读_第3张图片

我们可以看到,服务器收到的数据包,有包含多个发送端数据包的,这就是粘包了。

另外,接收端还有出现乱码的数据包,就是只包含部分发送端数据,这就是半包了。

这个实例的源码,直接简化了前面的基于Protobuf协议通讯的实例源码。代码的逻辑结构,是一样的。

源码中,客户端向服务器循环发了1000个数据包,服务器接收端,收到数据包,直接在屏幕输出。

服务器端运行:DemoServerApp 的main方法,客户端运行 DemoClientApp的main方法,就可以看到上面图片中所示的半包的结果。

本实验的具体的源码,还是请参见本文的源码工程:Netty 粘包/半包原理与拆包实战 源码

粘包和半包原理

这得从底层说起。

在操作系统层面来说,我们使用了 TCP 协议。

在Netty的应用层,按照 ByteBuf 为 单位来发送数据,但是到了底层操作系统仍然是按照字节流发送数据,因此,从底层到应用层,需要进行二次拼装

操作系统底层,是按照字节流的方式读入,到了 Netty 应用层面,需要二次拼装成 ByteBuf。

这就是粘包和半包的根源。

在Netty 层面,拼装成ByteBuf时,就是对底层缓冲的读取,这里就有问题了。

首先,上层应用层每次读取底层缓冲的数据容量是有限制的,当TCP底层缓冲数据包比较大时,将被分成多次读取,造成断包,在应用层来说,就是半包。

其次,如果上层应用层一次读到多个底层缓冲数据包,就是粘包。

如何解决呢?

基本思路是,在接收端,需要根据自定义协议来,来读取底层的数据包,重新组装我们应用层的数据包,这个过程通常在接收端称为拆包

拆包的原理

拆包基本原理,简单来说:

  • 接收端应用层不断从底层的TCP 缓冲区中读取数据。

  • 每次读取完,判断一下是否为一个完整的应用层数据包。如果是,上层应用层数据包读取完成。

  • 如果不是,那就保留该数据在应用层缓冲区,然后继续从 TCP 缓冲区中读取,直到得到一个完整的应用层数据包为止。

  • 至此,半包问题得以解决

  • 如果从TCP底层读到了多个应用层数据包,则将整个应用层缓冲区,拆成一个一个的独立的应用层数据包,返回给调用程序。

  • 至此,粘包问题得以解决

Netty 中的拆包器

拆包这个工作,Netty 已经为大家备好了很多不同的拆包器。本着不重复发明轮子的原则,我们直接使用Netty现成的拆包器。

Netty 中的拆包器大致如下:

  1. 固定长度的拆包器 FixedLengthFrameDecoder

    每个应用层数据包的都拆分成都是固定长度的大小,比如 1024字节。

    这个显然不大适应在 Java 聊天程序 进行实际应用。

  2. 行拆包器 LineBasedFrameDecoder

    每个应用层数据包,都以换行符作为分隔符,进行分割拆分。

    这个显然不大适应在 Java 聊天程序 进行实际应用。

  3. 分隔符拆包器 DelimiterBasedFrameDecoder

    每个应用层数据包,都通过自定义的分隔符,进行分割拆分。

    这个版本,是LineBasedFrameDecoder 的通用版本,本质上是一样的。

    这个显然不大适应在 Java 聊天程序 进行实际应用。

  4. 基于数据包长度的拆包器 LengthFieldBasedFrameDecoder

    将应用层数据包的长度,作为接收端应用层数据包的拆分依据。按照应用层数据包的大小,拆包。这个拆包器,有一个要求,就是应用层协议中包含数据包的长度。

    这个显然比较适和在 Java 聊天程序 进行实际应用。下面我们来应用这个拆分器。

拆包之前的消息包装

在使用LengthFieldBasedFrameDecoder 拆包器之前 ,在发送端需要对protobuf 的消息包进行一轮包装

发送端包装的方法是:

在实际的protobuf 二进制消息包的前面,加上四个字节。

前两个字节为版本号,后两个字节为实际发送的 protobuf 的消息长度。

在这里插入图片描述

强调一下,二进制消息包装,在发送端进行。

修改发送端的编码器 ProtobufEncoder ,代码如下:

/**
 * 编码器
 */
public class ProtobufEncoder extends MessageToByteEncoder
{
   
    @Override
    protected void encode(ChannelHandlerContext ctx, ProtoMsg.Message msg, ByteBuf out)
            throws Exception
    {

        byte[] bytes = msg.toByteArray();// 将对象转换为byte
        int length = bytes.length;// 读取 ProtoMsg 消息的长度
        ByteBuf buf = Unpooled.buffer(2 + length);
        // 先将消息协议的版本写入,也就是消息头
        buf.writeShort(Constants.PROTOCOL_VERSION);
        // 再将 ProtoMsg 消息的长度写入
        buf.writeShort(length);
        // 写入 ProtoMsg 消息的消息体
        buf.writeBytes(bytes);
        //发送
        out.writeBytes(buf);

    }

}

发送端的步骤是:

  • 先将消息协议的版本写入,也就是消息头

​ buf.writeShort(Constants.PROTOCOL_VERSION);

  • 再将 ProtoMsg 消息的长度写入
    buf.writeShort(length);

  • 最后,写入 ProtoMsg 消息的消息体
    buf.writeBytes(bytes);

开发一个接收端的自定义拆包器

使用Netty中,基于长度域拆包器 LengthFieldBasedFrameDecoder,按照实际的应用层数据包长度来拆分。

需要做两个工作:

  • 设置长度信息(长度域)在数据包中的位置。
  • 设置长度信息(长度域)自身的长度,也就是占用的字节数。

在前面的小节中,我们的长度信息(长度域)的占用字节数为 2个字节; 在报文中的所处的位置,长度信息(长度域)处于版本号之后。

版本号是2个字节,从0开始数,长度信息(长度域)的在数据包中的位置为2。

这些数据定义在Constansts常量类中。

public class Constants
{
    //协议版本号
    public static final short PROTOCOL_VERSION = 1;
    //头部的长度: 版本号 + 报文长度
    public static final short PROTOCOL_HEADLENGTH = 4;
    //长度的偏移
    public static final short LENGTH_OFFSET = 2;
    //长度的字节数
    public static final short LENGTH_BYTES_COUNT = 2;

}

有了这些数据之后,可以基于Netty 的长度拆包器 LengthFieldBasedFrameDecoder, 开发自己的长度分割器。

新开发的分割器为PackageSpliter,代码如下:

package com.crazymakercircle.chat.common.codec;


public class PackageSpliter extends LengthFieldBasedFrameDecoder
{

    public PackageSpliter() {
        super(Integer.MAX_VALUE, Constants.LENGTH_OFFSET,Constants.LENGTH_BYTES_COUNT);
    }

    @Override
    protected Object decode(ChannelHandlerContext ctx, ByteBuf in) throws Exception {

        return super.decode(ctx, in);
    }
}

分割器 PackageSpliter 继承了 LengthFieldBasedFrameDecoder,传入了三个参数。

  • 长度的偏移量 ,这里是 Constants.LENGTH_OFFSET,值为 2
  • 长度的字节数,这里是 Constants.LENGTH_BYTES_COUNT,值为 2
  • 最大的应用包长度,这里是 Integer.MAX_VALUE,表示不限制

分割器 写好之后,只需要在 pipeline 的最前面加上这个分割器,就可以使用这个分割器(自定义的拆包器)。

自定义拆包器的实际应用

在服务器端的 pipeline 的最前面加上这个分割器,代码如下:

package com.crazymakercircle.chat.server;
//...

@Service("ChatServer")
public class ChatServer
{
    static final Logger LOGGER = LoggerFactory.getLogger(ChatServer.class);
      //...
                //有连接到达时会创建一个channel
                protected void initChannel(SocketChannel ch) throws Exception
                {   //应用自定义拆包器
                    ch.pipeline().addLast(new PackageSpliter());
                    ch.pipeline().addLast(new ProtobufDecoder());
                    ch.pipeline().addLast(new ProtobufEncoder());
                    // pipeline管理channel中的Handler
                    // 在channel队列中添加一个handler来处理业务
                    ch.pipeline().addLast("serverHandler", serverHandler);
                }
            });
//....
}

在发送端的 pipeline 的最前面加上这个分割器,代码也是类似的, 这里不再赘述。大家可以下载源码查看。

为什么拆包器要加在pipeline 的最前面

这一点,需要从PackageSpliter 的根源讲起。

下面是自定义分割器 PackageSpliter 的继承关系图。

Netty 粘包 拆包 | 史上最全解读_第4张图片

由此可见,分割器 PackageSpliter 继承了ChannelInboundHandlerAdapter。

本质上,它是一个入站处理器

在 关于Netty的入站处理流程一文 Pipeline inbound 中, 我们已经知道,Netty的入站处理的顺序,是从pipelin 流水线的前面到后面。

由于在入站过程中,解码器 ProtobufDecoder 进行应用层 protobuf 的数据包的解码,而在此之前,必须完成应用包的正确分割。

所以, 分割器 PackageSpliter 必须处于入站流水线处理的第一站,放在最前面。

题外话, PackageSpliter 分割器 和 ProtobufEncoder 编码器 是否有关系呢?

从流水线处理的角度来说,是没有次序关系的。

PackageSpliter 是入站处理器。 在入站流程中用到。

ProtobufEncoder 是出站处理器,在出站流程中用到。

特别提示一下: 发送端不存在粘包和半包问题。这是接收端的事情。

总之,在出站和入站处理流程上,分割器 PackageSpliter 和 编码器ProtobufEncoder , 没有半毛钱关系的。

写在最后

至此为止,终于完成了 Java 聊天程序【 亿级流量】实战的一些基础开发工作。

包括了协议的编码解码。包括了粘包和半包的拆包处理。

大家好,我是作者尼恩。 为大家预告一下接下来的工作:

下一步,基本上可以开始[ 疯狂创客圈 IM] 聊天器的正式设计和开发的详细讲解了。


疯狂创客圈 实战计划
  • Java (Netty) 聊天程序【 亿级流量】实战 开源项目实战
  • Netty 源码、原理、JAVA NIO 原理
  • Java 面试题 一网打尽
  • 疯狂创客圈 【 博客园 总入口 】

你可能感兴趣的:(Netty 粘包 拆包 | 史上最全解读)