先说说模型,这里keras的模型搭建在熟悉率相关函数后较为简单,这里给出了代码和相关解释
model = Sequential()
# 没有标明步长默认为1
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu', input_shape = (28,28,1)))
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu'))
# keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid')
model.add(MaxPool2D(pool_size=(2,2)))
# 需要丢弃的输入比例,将一些置为0
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
# 建议使用优化器的默认参数,除了学习率 lr
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# 编译创建好的模型,网络模型搭建完后,需要对网络的学习过程进行配置,否则在调用 fit 或 evaluate 时会抛出异常
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
# Set a learning rate annealer 标准评估停止提升时,降低学习速率
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
其实越来越感觉模型的建立因为都大同小异,除非你能新提出一个新的网络结构,最重要的影响最终结果的就是数据的相关处理。数据的预处理在keras中主要利用pandas.read_csv函数对csv文件进行读取,读取后的数据格式是dataframe
# pd 读取为dataframe格式
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
# 查找一列的'label'值,X是训练集,Y是标签
Y_train = train["label"]
# Drop 'label' column,drop函数默认删除行,列需要加axis = 1
X_train = train.drop(labels = ["label"],axis = 1)
# free some space,是个好习惯
del train
# 图像可视化,观察已有数据的整体分布情况,合理分块进行训练
# sns.set(style='white', context='notebook', palette='deep')
# 以'label'列的不同数据为类别(作为x轴)分类画图
# g = sns.countplot(Y_train)
# 各个数据的个数
# Y_train.value_counts()
# Check the data
# df.isnull().any()会判断哪些列包含缺失值,该列存在缺失值则返回True,反之False
# isnull().sum()就更加直观了,它直接告诉了我们每列缺失值的数量
X_train.isnull().any().describe()
test.isnull().any().describe()
# Normalize the data (0~1)
X_train = X_train / 255.0
test = test / 255.0
# 在这里调整数据的输入和输出格式
# Reshape image in 3 dimensions (height = 28px, width = 28px , canal = 1),这里加上-1后是4维
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
# Encode labels to one hot vectors( train number *10) (ex : 2 -> [0,0,1,0,0,0,0,0,0,0]),列为0~9,每个为其对应数的概率
Y_train = to_categorical(Y_train, num_classes = 10)
# 在这里加上这个是为了保证数据的随机划分也和笔者保持一致
random_seed = 2
# rain_test_split函数用于将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签
# X_train,Y_train是0.9的训练数据和标签,X_val,Y_val是0.1的测试数据和标签
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed)
上述代码g = sns.countplot(Y_train)展示的图可以很直观的显示训练数据的平均分配,可以让训练比较可靠
数据增强后的训练:这里ImageDataGenerator是用于数据增强的函数
# Turn epochs to 30 to get 0.9967 accuracy
epochs = 1
batch_size = 86
# Without data augmentation i obtained an accuracy of 0.98114
#history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs,
# validation_data = (X_val, Y_val), verbose = 2)
# With data augmentation to prevent overfitting (accuracy 0.99286)
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
# x: 样本数据。秩应该为 4。对于灰度数据,通道轴的值应该为 1;对于 RGB 数据,值应该为 3。
# datagen.fit(train_data)正是用于计算train_data数据的均值,标准差等会更mean,std,principal_compoments
datagen.fit(X_train)
# Fit the model
# batch的size设置的不能太大也不能太小,因此实际工程中最常用的就是mini-batch,一般size设置为几十或者几百
# fit_generator函数返回History对象,其记录了运行输出
# steps_per_epoch:整数,当生成器返回steps_per_epoch次数据时计一个epoch结束,执行下一个epoch
# verbose: 日志显示模式。0,1 或 2。0 = 安静模式,1 = 进度条,2 = 每轮一行
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data = (X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size,
callbacks=[learning_rate_reduction])
在这里其实算是最终的已经训练好模型的评测,对训练次数的决定以及相关干扰图像的摘选等都很有意义
# 训练与测试的准确率和错误率图像
fig, ax = plt.subplots(2,1)
# History类对象包含两个属性,分别为epoch和history,epoch为训练轮数,history字典含val_loss,val_acc,loss,acc四个key值
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
legend = ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['acc'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)
# 建立误差矩阵用于估计判断整个模型的好坏
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
# 刻度范围,刻度标签,旋转角度
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
# astype:转换数组的数据类型
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
# product(A, B)函数,返回A、B中的元素的笛卡尔积的元组
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
# 这里i,j为何反转不清楚
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Predict the values from the validation dataset 1*10
Y_pred = model.predict(X_val)
# Convert predictions classes to one hot vectors 行方向搜索最大值
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(Y_val,axis = 1)
# compute the confusion matrix
# sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
# y_true: 是样本真实分类结果,y_pred: 是样本预测分类结果
# labels:是所给出的类别,通过这个可对类别进行选择
# sample_weight : 样本权重
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
# plot the confusion matrix
plot_confusion_matrix(confusion_mtx, classes = range(10))
# 找出那些预测错误且和真实标签概率相差较大的图像
# Errors are difference between predicted labels and true labels
# error=[ True False True……]
errors = (Y_pred_classes - Y_true != 0)
# 由预测的输出得到的标签集合
Y_pred_classes_errors = Y_pred_classes[errors]
# 预测的结果输出
Y_pred_errors = Y_pred[errors]
# 实际的模型输入数据标签
Y_true_errors = Y_true[errors]
# 实际的模型输入数据
X_val_errors = X_val[errors]
def display_errors(errors_index,img_errors,pred_errors, obs_errors):
""" This function shows 6 images with their predicted and real labels"""
n = 0
nrows = 2
ncols = 3
fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True)
for row in range(nrows):
for col in range(ncols):
error = errors_index[n]
ax[row,col].imshow((img_errors[error]).reshape((28,28)))
ax[row,col].set_title("Predicted label :{}\nTrue label :{}".format(pred_errors[error],obs_errors[error]))
n += 1
# Probabilities of the wrong predicted numbers
Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1)
# Predicted probabilities of the true values in the error set
# take(a,b,)从a中取出b位置对应的数,这里take会得到矩阵sizi:num(error)* num(error)
true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1))
# Difference between the probability of the predicted label and the true label
delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors
sorted_dela_errors = np.argsort(delta_pred_true_errors)
most_important_errors = sorted_dela_errors[-6:]
# Show the top 6 errors
display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors)
可以看到随着训练损失度逐渐下降,而准确度在提升
这里混淆矩阵显示率整体的预测与真实的对照关系
按照上述方法排名提升至三百七十多,对于最开始的提交是没有在keras,tensorflow这类平台上撰写的代码,只能针对一些较为简单的项目,还是需要了解这些平台下的函数以及相关使用方法