最近在看netty源码的时候发现了一个叫FastThreadLocal的类,jdk本身自带了ThreadLocal类,所以可以大致想到此类比jdk自带的类速度更快,主要快在什么地方,以及为什么速度更快,下面做一个简单的分析;
ThreadLocal主要被用在多线程环境下,方便的获取当前线程的数据,使用者无需关心多线程问题,方便使用;为了能说明问题,分别对两个场景进行测试,分别是:多个线程操作同一个ThreadLocal,单线程下的多个ThreadLocal,下面分别测试:
分别对ThreadLocal和FastThreadLocal使用测试代码,部分代码如下:
public static void test2() throws Exception {
CountDownLatch cdl = new CountDownLatch(10000);
ThreadLocal threadLocal = new ThreadLocal();
long starTime = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
new Thread(new Runnable() {
@Override
public void run() {
threadLocal.set(Thread.currentThread().getName());
for (int k = 0; k < 100000; k++) {
threadLocal.get();
}
cdl.countDown();
}
}, "Thread" + (i + 1)).start();
}
cdl.await();
System.out.println(System.currentTimeMillis() - starTime + "ms");
}
以上代码创建了10000个线程,同时往ThreadLocal设置,然后get十万次,然后通过CountDownLatch来计算总的时间消耗,运行结果为:1000ms左右;
下面再对FastThreadLocal进行测试,代码类似:
public static void test2() throws Exception {
CountDownLatch cdl = new CountDownLatch(10000);
FastThreadLocal threadLocal = new FastThreadLocal();
long starTime = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
new FastThreadLocalThread(new Runnable() {
@Override
public void run() {
threadLocal.set(Thread.currentThread().getName());
for (int k = 0; k < 100000; k++) {
threadLocal.get();
}
cdl.countDown();
}
}, "Thread" + (i + 1)).start();
}
cdl.await();
System.out.println(System.currentTimeMillis() - starTime);
}
运行之后结果为:1000ms左右;可以发现在这种情况下两种类型的ThreadLocal在性能上并没有什么差距,下面对第二种情况进行测试;
分别对ThreadLocal和FastThreadLocal使用测试代码,部分代码如下:
public static void test1() throws InterruptedException {
int size = 10000;
ThreadLocal tls[] = new ThreadLocal[size];
for (int i = 0; i < size; i++) {
tls[i] = new ThreadLocal();
}
new Thread(new Runnable() {
@Override
public void run() {
long starTime = System.currentTimeMillis();
for (int i = 0; i < size; i++) {
tls[i].set("value" + i);
}
for (int i = 0; i < size; i++) {
for (int k = 0; k < 100000; k++) {
tls[i].get();
}
}
System.out.println(System.currentTimeMillis() - starTime + "ms");
}
}).start();
}
以上代码创建了10000个ThreadLocal,然后使用同一个线程对ThreadLocal设值,同时get十万次,运行结果:2000ms左右;
下面再对FastThreadLocal进行测试,代码类似:
public static void test1() {
int size = 10000;
FastThreadLocal tls[] = new FastThreadLocal[size];
for (int i = 0; i < size; i++) {
tls[i] = new FastThreadLocal();
}
new FastThreadLocalThread(new Runnable() {
@Override
public void run() {
long starTime = System.currentTimeMillis();
for (int i = 0; i < size; i++) {
tls[i].set("value" + i);
}
for (int i = 0; i < size; i++) {
for (int k = 0; k < 100000; k++) {
tls[i].get();
}
}
System.out.println(System.currentTimeMillis() - starTime + "ms");
}
}).start();
}
运行结果:30ms左右;可以发现性能达到两个数量级的差距,当然这是在大量访问次数的情况下才有的效果;下面重点分析一下ThreadLocal的机制,以及FastThreadLocal为什么比ThreadLocal更快;
因为我们常用的就是set和get方法,分别看一下对应的源码:
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
以上代码大致意思:首先获取当前线程,然后获取当前线程中存储的threadLocals变量,此变量其实就是ThreadLocalMap,最后看此ThreadLocalMap是否为空,为空就创建一个新的Map,不为空则以当前的ThreadLocal为key,存储当前value;可以进一步看一下ThreadLocalMap中的set方法:
private void set(ThreadLocal> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
大致意思:ThreadLocalMap内部使用一个数组来保存数据,类似HashMap;每个ThreadLocal在初始化的时候会分配一个threadLocalHashCode,然后和数组的长度进行取模操作,所以就会出现hash冲突的情况,在HashMap中处理冲突是使用数组+链表的方式,而在ThreadLocalMap中,可以看到直接使用nextIndex,进行遍历操作,明显性能更差;下面再看一下get方法:
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
同样是先获取当前线程,然后获取当前线程中的ThreadLocalMap,然后以当前的ThreadLocal为key,到ThreadLocalMap中获取value:
private Entry getEntry(ThreadLocal> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
private Entry getEntryAfterMiss(ThreadLocal> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal> k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
同set方式,通过取模获取数组下标,如果没有冲突直接返回数据,否则同样出现遍历的情况;所以通过分析可以大致知道以下几个问题:郑州哪家医院治疗不孕不育好:http://jbk.39.net/yiyuanzaixian/zztjyy/
1.ThreadLocalMap是存放在Thread下面的,ThreadLocal作为key,所以多个线程操作同一个ThreadLocal其实就是在每个线程的ThreadLocalMap中插入的一条记录,不存在任何冲突问题;
2.ThreadLocalMap在解决冲突时,通过遍历的方式,非常影响性能;
3.FastThreadLocal通过其他方式解决冲突的问题,达到性能的优化;
下面继续来看一下FastThreadLocal是通过何种方式达到性能的优化。
Netty中分别提供了FastThreadLocal和FastThreadLocalThread两个类,FastThreadLocalThread继承于Thread,下面同样对常用的set和get方法来进行源码分析:
public final void set(V value) {
if (value != InternalThreadLocalMap.UNSET) {
set(InternalThreadLocalMap.get(), value);
} else {
remove();
}
}
public final void set(InternalThreadLocalMap threadLocalMap, V value) {
if (value != InternalThreadLocalMap.UNSET) {
if (threadLocalMap.setIndexedVariable(index, value)) {
addToVariablesToRemove(threadLocalMap, this);
}
} else {
remove(threadLocalMap);
}
}
此处首先对value进行判定是否为InternalThreadLocalMap.UNSET,然后同样使用了一个InternalThreadLocalMap用来存放数据:郑州哪个医院治疗不孕不育好:http://wapyyk.39.net/zz3/zonghe/1d427.html
public static InternalThreadLocalMap get() {
Thread thread = Thread.currentThread();
if (thread instanceof FastThreadLocalThread) {
return fastGet((FastThreadLocalThread) thread);
} else {
return slowGet();
}
}
private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {
InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();
if (threadLocalMap == null) {
thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());
}
return threadLocalMap;
}
可以发现InternalThreadLocalMap同样存放在FastThreadLocalThread中,不同在于,不是使用ThreadLocal对应的hash值取模获取位置,而是直接使用FastThreadLocal的index属性,index在实例化时被初始化:
private final int index;
public FastThreadLocal() {
index = InternalThreadLocalMap.nextVariableIndex();
}
再进入nextVariableIndex方法中:
static final AtomicInteger nextIndex = new AtomicInteger();
public static int nextVariableIndex() {
int index = nextIndex.getAndIncrement();
if (index < 0) {
nextIndex.decrementAndGet();
throw new IllegalStateException("too many thread-local indexed variables");
}
return index;
}
在InternalThreadLocalMap中存在一个静态的nextIndex对象,用来生成数组下标,因为是静态的,所以每个FastThreadLocal生成的index是连续的,再看一下InternalThreadLocalMap中是如何setIndexedVariable的:
public boolean setIndexedVariable(int index, Object value) {
Object[] lookup = indexedVariables;
if (index < lookup.length) {
Object oldValue = lookup[index];
lookup[index] = value;
return oldValue == UNSET;
} else {
expandIndexedVariableTableAndSet(index, value);
return true;
}
}
indexedVariables是一个对象数组,用来存放value;直接使用index作为数组下标进行存放;如果index大于数组长度,进行扩容;get方法直接通过FastThreadLocal中的index进行快速读取:http://www.chacha8.cn/detail/1132398230.html
public final V get(InternalThreadLocalMap threadLocalMap) {
Object v = threadLocalMap.indexedVariable(index);
if (v != InternalThreadLocalMap.UNSET) {
return (V) v;
}
return initialize(threadLocalMap);
}
public Object indexedVariable(int index) {
Object[] lookup = indexedVariables;
return index < lookup.length? lookup[index] : UNSET;
}
直接通过下标进行读取,速度非常快;但是这样会有一个问题,可能会造成空间的浪费;
通过以上分析我们可以知道在有大量的ThreadLocal进行读写操作的时候,才可能会遇到性能问题;另外FastThreadLocal通过空间换取时间的方式来达到O(1)读取数据;还有一个疑问就是内部为什么不直接使用HashMap(数组+黑红树)来代替ThreadLocalMap。