C++原子性实现无锁队列(待完善)

关于CAS等原子操作
CAS操作——Compare & Set,或是 Compare & Swap,现在几乎所有的CPU指令都支持CAS的原子操作。有了这个原子操作,就可以实现各种无锁(lock free)的数据结构。

与CAS相似的还有下面的原子操作:(这些东西大家自己看Wikipedia吧)

Fetch And Add,一般用来对变量做 +1 的原子操作
Test-and-set,写值到某个内存位置并传回其旧值。汇编指令BST
Test and Test-and-set,用来低低Test-and-Set的资源争夺情况
注:在实际的C/C++程序中,CAS的各种实现版本如下:

1)GCC的CAS

GCC4.1+版本中支持CAS的原子操作(完整的原子操作可参看 GCC Atomic Builtins)

bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)

type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)
2)Windows的CAS

在Windows下,你可以使用下面的Windows API来完成CAS:(完整的Windows原子操作可参看MSDN的InterLocked Functions)

InterlockedCompareExchange ( __inout LONG volatile  *Target, __in LONG Exchange, __in LONG Comperand);
3) C++11中的CAS

C++11中的STL中的atomic类的函数可以让你跨平台。(完整的C++11的原子操作可参看 Atomic Operation Library)

template< class T >

bool atomic_compare_exchange_weak( std::atomic* obj, T* expected, T desired );

template< class T >

bool atomic_compare_exchange_weak( volatile std::atomic* obj, T* expected, T desired );
无锁队列的链表实现

EnQueue(x) //进队列

{

    q = new record(x);

    q->next = NULL;

    do
{

        p = tail; //取链表尾指针的快照

    } while( CAS(p->next, NULL, q) != TRUE); //如果没有把结点链在尾指针上,再试

    CAS(tail, p, q); //置尾结点

}
“置尾结点”的操作不判断是否成功,因为:

如果有一个线程T1,它的while中的CAS如果成功的话,那么其它所有的 随后线程的CAS都会失败,然后就会再循环,
此时,如果T1 线程还没有更新tail指针,其它的线程继续失败,因为tail->next不是NULL了。
直到T1线程更新完tail指针,于是其它的线程中的某个线程就可以得到新的tail指针,继续往下走了。
这里有一个潜在的问题——如果T1线程在用CAS更新tail指针的之前,线程停掉或是挂掉了,那么其它线程就进入死循环了。下面是改良版的EnQueue()

EnQueue(x) //进队列改良版

{

    q = new record(x);

    q->next = NULL;

    p = tail;

    oldp = p

    do
{

        while (p->next != NULL)  p = p->next;

    } while( CAS(p.next, NULL, q) != TRUE); //如果没有把结点链在尾上,再试

 

    CAS(tail, oldp, q); //置尾结点

}
我们让每个线程,自己fetch 指针 p 到链表尾。但是这样的fetch会很影响性能。而通实际情况看下来,99.9%的情况不会有线程停转的情况,所以,更好的做法是,你可以接合上述的这两个版本,如果retry的次数超了一个值的话(比如说3次),那么,就自己fetch指针。

DeQueue() //出队列

{

    do{

        p = head;

        if (p->next == NULL){

            return ERR_EMPTY_QUEUE;

        }  while( CAS(head, p, p->next) != TRUE );

    return p->next->value;

}
我们可以看到,DeQueue的代码操作的是 head->next,而不是head本身。这样考虑是因为一个边界条件,我们需要一个dummy的头指针来解决链表中如果只有一个元素,head和tail都指向同一个结点的问题,这样EnQueue和DeQueue要互相排斥了。

注:上图的tail正处于更新之前的装态。

C++原子性实现无锁队列(待完善)_第1张图片

CAS的ABA问题
进程P1在共享变量中读到值为A
P1被抢占了,进程P2执行
P2把共享变量里的值从A改成了B,再改回到A,此时被P1抢占。
P1回来看到共享变量里的值没有被改变,于是继续执行。
虽然P1以为变量值没有改变,继续执行了,但是这个会引发一些潜在的问题。ABA问题最容易发生在lock free 的算法中的,CAS首当其冲,因为CAS判断的是指针的地址。如果这个地址被重用了呢,问题就很大了。(地址被重用是很经常发生的,一个内存分配后释放了,再分配,很有可能还是原来的地址)

解决ABA的问题
维基百科上给了一个解——使用double-CAS(双保险的CAS),例如,在32位系统上,我们要检查64位的内容

1)一次用CAS检查双倍长度的值,前半部是指针,后半部分是一个计数器。

2)只有这两个都一样,才算通过检查,要吧赋新的值。并把计数器累加1。

这样一来,ABA发生时,虽然值一样,但是计数器就不一样(但是在32位的系统上,这个计数器会溢出回来又从1开始的,这还是会有ABA的问题)

当然,我们这个队列的问题就是不想让那个内存重用,这样明确的业务问题比较好解决,论文《Implementing Lock-Free Queues》给出了一个方法——使用结点内存引用计数refcnt!

SafeRead(q)

{

    loop:

        p = q->next;

        if(p == NULL){

            return p;

        }

        Fetch&Add(p->refcnt, 1);

        if(p == q->next){

            return p;

        }else{

            Release(p);

        }

    goto
loop;

}
其中的 Fetch&Add和Release分别是加引用计数和减引用计数,都是原子操作,这样就可以阻止内存被回收了。

用数组实现无锁队列
本实现来自论文《Implementing Lock-Free Queues》

使用数组来实现队列是很常见的方法,因为没有内存的分部和释放,一切都会变得简单,实现的思路如下:

1)数组队列应该是一个ring buffer形式的数组(环形数组)

2)数组的元素应该有三个可能的值:HEAD,TAIL,EMPTY(当然,还有实际的数据)

3)数组一开始全部初始化成EMPTY,有两个相邻的元素要初始化成HEAD和TAIL,这代表空队列。

4)EnQueue操作。假设数据x要入队列,定位TAIL的位置,使用double-CAS方法把(TAIL, EMPTY) 更新成 (x, TAIL)。需要注意,如果找不到(TAIL, EMPTY),则说明队列满了。

5)DeQueue操作。定位HEAD的位置,把(HEAD, x)更新成(EMPTY, HEAD),并把x返回。同样需要注意,如果x是TAIL,则说明队列为空。

算法的一个关键是——如何定位HEAD或TAIL?

1)我们可以声明两个计数器,一个用来计数EnQueue的次数,一个用来计数DeQueue的次数。

2)这两个计算器使用Fetch&ADD来进行原子累加,在EnQueue或DeQueue完成的时候累加就好了。

3)累加后求个模什么的就可以知道TAIL和HEAD的位置了。

如下图所示:

C++原子性实现无锁队列(待完善)_第2张图片

 小结
以上基本上就是所有的无锁队列的技术细节,这些技术都可以用在其它的无锁数据结构上。

1)无锁队列主要是通过CAS、FAA这些原子操作,和Retry-Loop实现。

2)对于Retry-Loop,我个人感觉其实和锁没什么两样。只是这种“锁”的粒度变小了,主要是“锁”HEAD和TAIL这两个关键资源。而不是整个数据结构。

还有一些和Lock Free的文章你可以去看看:

Code Project 上的雄文 《Yet another implementation of a lock-free circular array queue》
Herb Sutter的《Writing Lock-Free Code: A Corrected Queue》– 用C++11的std::atomic模板。
IBM developerWorks的《设计不使用互斥锁的并发数据结构》

--------------------- 
作者:Rain-晴天 
来源:CSDN 
原文:https://blog.csdn.net/rain_qingtian/article/details/11142027 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(C++11)