吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值

一,残差网络实现手写数字识别

数据集地址:https://download.csdn.net/download/fanzonghao/10551018

首先来resnets_utils.py,里面有手势数字的数据集载入函数和随机产生mini-batch的函数,代码如下:

import os
import numpy as np
import tensorflow as tf
import h5py
import math

def load_dataset():
    train_dataset = h5py.File('datasets/train_signs.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    # print(train_set_x_orig.shape)
    # print(train_set_y_orig.shape)
    test_dataset = h5py.File('datasets/test_signs.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    # print(test_set_x_orig.shape)
    # print(test_set_y_orig.shape)
    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

#load_dataset()
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
    """
    Creates a list of random minibatches from (X, Y)
    
    Arguments:
    X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y)
    mini_batch_size - size of the mini-batches, integer
    seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
    
    Returns:
    mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
    """
    
    m = X.shape[0]                  # number of training examples
    mini_batches = []
    np.random.seed(seed)
    
    # Step 1: Shuffle (X, Y)
    permutation = list(np.random.permutation(m))
    shuffled_X = X[permutation,:,:,:]
    shuffled_Y = Y[permutation,:]

    # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
    num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
    for k in range(0, num_complete_minibatches):
        mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]
        mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    
    # Handling the end case (last mini-batch < mini_batch_size)
    if m % mini_batch_size != 0:
        mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]
        mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    
    return mini_batches


def convert_to_one_hot(Y, C):
    Y = np.eye(C)[Y.reshape(-1)].T
    return Y


def forward_propagation_for_predict(X, parameters):
    """
    Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
    
    Arguments:
    X -- input dataset placeholder, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
                  the shapes are given in initialize_parameters

    Returns:
    Z3 -- the output of the last LINEAR unit
    """
    
    # Retrieve the parameters from the dictionary "parameters" 
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3'] 
                                                           # Numpy Equivalents:
    Z1 = tf.add(tf.matmul(W1, X), b1)                      # Z1 = np.dot(W1, X) + b1
    A1 = tf.nn.relu(Z1)                                    # A1 = relu(Z1)
    Z2 = tf.add(tf.matmul(W2, A1), b2)                     # Z2 = np.dot(W2, a1) + b2
    A2 = tf.nn.relu(Z2)                                    # A2 = relu(Z2)
    Z3 = tf.add(tf.matmul(W3, A2), b3)                     # Z3 = np.dot(W3,Z2) + b3
    
    return Z3

def predict(X, parameters):
    
    W1 = tf.convert_to_tensor(parameters["W1"])
    b1 = tf.convert_to_tensor(parameters["b1"])
    W2 = tf.convert_to_tensor(parameters["W2"])
    b2 = tf.convert_to_tensor(parameters["b2"])
    W3 = tf.convert_to_tensor(parameters["W3"])
    b3 = tf.convert_to_tensor(parameters["b3"])
    
    params = {"W1": W1,
              "b1": b1,
              "W2": W2,
              "b2": b2,
              "W3": W3,
              "b3": b3}
    
    x = tf.placeholder("float", [12288, 1])
    
    z3 = forward_propagation_for_predict(x, params)
    p = tf.argmax(z3)
    
    sess = tf.Session()
    prediction = sess.run(p, feed_dict = {x: X})
        
    return prediction

测试数据集,代码如下:

import resnets_utils
import cv2
train_x, train_y, test_x, test_y, classes=resnets_utils.load_dataset()
print('训练样本={}'.format(train_x.shape))
print('训练样本标签={}'.format(train_y.shape))
print('测试样本={}'.format(test_x.shape))
print('测试样本标签={}'.format(test_y.shape))
print('第五个样本={}'.format(train_y[0,5]))
cv2.imshow('1.jpg',train_x[5,:,:,:]/255)
cv2.waitKey()

打印结果:可看出训练样本有1080个,size为(64,64,3),测试样本有120个,手势四是用4代替。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第1张图片

先测试第一个残差学习单元,模型如下:

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第2张图片

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
def identity_block(X,f,filters,stage,block):
    conv_name_base='res'+str(stage)+block+'_branch'
    bn_name_base='bn'+str(stage)+block+'_branch'
    F1,F2,F3=filters
    X_shortcut=X
    print('输入尺寸={}'.format(X.shape))
    #first conv
    X=Conv2D(filters=F1,kernel_size=(1,1),strides=(1,1),padding='valid',name=conv_name_base+'2a',
             kernel_initializer=glorot_uniform(seed=0))(X)
    print('输出尺寸={}'.format(X.shape))
    X=BatchNormalization(axis=3,name=bn_name_base+'2a')(X)
    X=Activation('relu')(X)
    #second conv
    X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
               kernel_initializer=glorot_uniform(seed=0))(X)
    print('输出尺寸={}'.format(X.shape))
    X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
    X = Activation('relu')(X)
    #third conv
    X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
    print('输出尺寸={}'.format(X.shape))
    #ResNet
    X=Add()([X,X_shortcut])
    X = Activation('relu')(X)
    print('最终输出尺寸={}'.format(X.shape))
    return X
def test_identity_block():
    with tf.Session() as sess:
        np.random.seed(1)
        A_prev=tf.placeholder('float',[3,4,4,6])
        X=np.random.randn(3,4,4,6)
        A=identity_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a')
        init=tf.global_variables_initializer()
        sess.run(init)
        out=sess.run([A],feed_dict={A_prev:X,K.learning_phase():0})
if __name__=='__main__':
    test_identity_block()

打印结果:由此可见经过三层卷积,该残差单元的输出size和维度不变,因为原始输入未进行卷积,故只能这样才能进行特征融合。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第3张图片

下面是输出维度会发生变化的,对原始输入X做了卷积变换再融合输出得到最终的输出,模型如下

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第4张图片

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
def convolutional_block(X,f,filters,stage,block,s=2):
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    F1, F2, F3 = filters
    X_shortcut = X
    print('输入尺寸={}'.format(X.shape))
    # first conv
    X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
    X = Activation('relu')(X)
    print('输出尺寸={}'.format(X.shape))
    # second conv
    X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
    X = Activation('relu')(X)
    print('输出尺寸={}'.format(X.shape))
    #third conv
    X = Conv2D(filters=8, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
    X = Activation('relu')(X)
    print('输出尺寸={}'.format(X.shape))
    #ResNet
    X_shortcut=Conv2D(filters=8, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',
               kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
    X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
    print('原始输入X经过变化的输出尺寸={}'.format(X.shape))
    X = Add()([X, X_shortcut])
    X = Activation('relu')(X)
    print('最终输出尺寸={}'.format(X.shape))
    return X
def test_convolutional_block():
    #tf.reset_default_graph()
    with tf.Session() as sess:
        np.random.seed(1)
        A_prev=tf.placeholder('float',[3,4,4,6])
        X=np.random.randn(3,4,4,6)
        A=convolutional_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a',s=2)
        init = tf.global_variables_initializer()
        sess.run(init)
        out=sess.run(A,feed_dict={A_prev:X})
if __name__=='__main__':
    #test_identity_block()
    test_convolutional_block()

打印结果:可看出原始输入改变size为(3,2,2,8)最终融合的输出也是(3,2,2,8),故此种残差单元能够解决输出尺寸和维度的问题。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第5张图片

总体模型:其中BLOCK2值得是输出尺度和维度会变化的,BLOCK1指的是不会变化的。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第6张图片

下面用开始调用数据集:其中convolutional_block表示输出尺寸和维度会变化,identity_block表示输出与输入一样,模型如下,

代码如下:

from keras.layers import Dense,Flatten,Input,Activation,ZeroPadding2D,AveragePooling2D,BatchNormalization,Conv2D,Add,MaxPooling2D
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.initializers import glorot_uniform
import tensorflow as tf
import time
"""
获取数据  并将标签转换成one-hot
"""
def convert_data():
    train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=resnets_utils.load_dataset()
    train_x=train_set_x_orig/255
    test_x = test_set_x_orig / 255
    train_y=resnets_utils.convert_to_one_hot(train_set_y_orig,6).T
    test_y = resnets_utils.convert_to_one_hot(test_set_y_orig, 6).T
    #print(train_y.shape)
    return train_x,train_y,test_x,test_y
"""
三层卷积的 残差单元 输出尺寸和维度不会变化
"""
def identity_block(X,f,filters,stage,block):
    conv_name_base='res'+str(stage)+block+'_branch'
    bn_name_base='bn'+str(stage)+block+'_branch'
    F1,F2,F3=filters
    X_shortcut=X
    # print('输入尺寸={}'.format(X.shape))
    #first conv
    X=Conv2D(filters=F1,kernel_size=(1,1),strides=(1,1),padding='valid',name=conv_name_base+'2a',
             kernel_initializer=glorot_uniform(seed=0))(X)
    # print('输出尺寸={}'.format(X.shape))
    X=BatchNormalization(axis=3,name=bn_name_base+'2a')(X)
    X=Activation('relu')(X)
    #second conv
    X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
               kernel_initializer=glorot_uniform(seed=0))(X)
    # print('输出尺寸={}'.format(X.shape))
    X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
    X = Activation('relu')(X)
    #third conv
    X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
    # print('输出尺寸={}'.format(X.shape))
    #ResNet
    X=Add()([X,X_shortcut])
    X = Activation('relu')(X)
    # print('最终输出尺寸={}'.format(X.shape))
    return X

"""
三层卷积的 残差单元 输出尺寸和维度会变化
"""
def convolutional_block(X,f,filters,stage,block,s=2):
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    F1, F2, F3 = filters
    X_shortcut = X
    # print('输入尺寸={}'.format(X.shape))
    # first conv
    X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
    X = Activation('relu')(X)
    # print('输出尺寸={}'.format(X.shape))
    # second conv
    X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
    X = Activation('relu')(X)
    # print('输出尺寸={}'.format(X.shape))
    #third conv
    X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
               kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
    X = Activation('relu')(X)
    # print('输出尺寸={}'.format(X.shape))
    #ResNet
    X_shortcut=Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',
               kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
    X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
    # print('原始输入X经过变化的输出尺寸={}'.format(X.shape))
    X = Add()([X, X_shortcut])
    X = Activation('relu')(X)
    # print('最终输出尺寸={}'.format(X.shape))
    return X

"""
50层残差网络
"""
def ResNet50(input_shape=(64,64,3),classes=6):
    X_input=Input(input_shape)
    print('输入尺寸={}'.format(X_input.shape))
    X=ZeroPadding2D((3,3))(X_input)
    print('补完零尺寸={}'.format(X.shape))
    #Stage 1
    X=Conv2D(filters=64,kernel_size=(7,7),strides=(2,2),name='conv1',
           kernel_initializer=glorot_uniform(seed=0))(X)
    print('第一次卷积尺寸={}'.format(X.shape))
    X=BatchNormalization(axis=3,name='bn_conv1')(X)
    X=Activation('relu')(X)
    X=MaxPooling2D(pool_size=(3,3),strides=(2,2))(X)
    print('第一次池化尺寸={}'.format(X.shape))
    #Stage 2
    X=convolutional_block(X,f=3,filters=[64,64,256],stage=2,block='a',s=1)
    print('第一次convolutional_block尺寸={}'.format(X.shape))
    X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block='b')
    X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block='c')
    print('两次identity_block尺寸={}'.format(X.shape))

    #Stage 3
    X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
    print('第二次convolutional_block尺寸={}'.format(X.shape))
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='b')
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='c')
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block='d')
    print('三次identity_block尺寸={}'.format(X.shape))

    #Stage 4
    X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
    print('第三次convolutional_block尺寸={}'.format(X.shape))
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='b')
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='c')
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='d')
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='e')
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block='f')
    print('五次identity_block尺寸={}'.format(X.shape))

    #Stage 5
    X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
    print('第四次convolutional_block尺寸={}'.format(X.shape))
    X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block='b')
    X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block='c')
    print('两次identity_block尺寸={}'.format(X.shape))
    #Pool
    X=AveragePooling2D(pool_size=(2,2))(X)
    print('最后一次平均池化尺寸={}'.format(X.shape))

    #OutPut Flatten+FULLYCONNECTED
    X=Flatten()(X)
    X=Dense(units=classes,activation='softmax',name='fc'+str(classes),kernel_initializer=glorot_uniform(seed=0))(X)

    #create model
    model=Model(inputs=X_input,outputs=X,name='ResNet50')

    return model
def test_identity_block():
    with tf.Session() as sess:
        np.random.seed(1)
        A_prev=tf.placeholder('float',[3,4,4,6])
        X=np.random.randn(3,4,4,6)
        A=identity_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a')
        init=tf.global_variables_initializer()
        sess.run(init)
        out=sess.run([A],feed_dict={A_prev:X,K.learning_phase():0})
        # print('out=',out[0][1][1][0])
def test_convolutional_block():
    #tf.reset_default_graph()
    with tf.Session() as sess:
        np.random.seed(1)
        A_prev=tf.placeholder('float',[3,4,4,6])
        X=np.random.randn(3,4,4,6)
        A=convolutional_block(A_prev,f=2,filters=[2,4,6],stage=1,block='a',s=2)
        init = tf.global_variables_initializer()
        sess.run(init)
        out=sess.run(A,feed_dict={A_prev:X})
        print('out=',out[0][0][0])
def test_ResNet50():
    #定义好模型结构
    Resnet50_model=ResNet50(input_shape=(64,64,3),classes=6)
    #选定训练参数
    Resnet50_model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
    #获取训练集和测试集
    train_x, train_y, test_x, test_y=convert_data()
    #训练集上训练
    start_time=time.time()
    print('============开始训练===============')
    Resnet50_model.fit(x=train_x,y=train_y,batch_size=32,epochs=2)
    end_time=time.time()
    print('train_time={}'.format(end_time-start_time))
    #测试集上测试
    preds=Resnet50_model.evaluate(x=test_x,y=test_y,batch_size=32,)

    print('loss={}'.format(preds[0]))
    print('Test Accuracy={}'.format(preds[1]))

if __name__=='__main__':
    #test_identity_block()
    #test_convolutional_block()
    #convert_data()
    test_ResNet50()

打印结果:
吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第7张图片

其中问号代表的是样本数,可看出最终卷积输出是1×1×2048

训练样本为1080个,第一个Epoch每个样本时间为175ms,所以共189s.第一次epoch训练精度为0.27。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第8张图片

第二个Epoch每个样本时间为165ms,所以共178s.训练两次epoch时间为376S,不等于两次epoch时间之和,应该是有别的开支。第二次epoch训练精度为0.40提高了。

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第9张图片

经过两次epoch的模型来测试120个样本,测试精度为0.19,恩很低,所以还要多训练嘛。

二,tensorboard显示

首先安装graphviz用于可视化网络

apt-get install graphviz

pip install graphviz

pip install pydot

可视化网络如下:

吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第10张图片

调节学习率的clr_callback.py文件:

from keras.callbacks import *

class CyclicLR(Callback):
    """This callback implements a cyclical learning rate policy (CLR).
    The method cycles the learning rate between two boundaries with
    some constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).
    The amplitude of the cycle can be scaled on a per-iteration or
    per-cycle basis.
    This class has three built-in policies, as put forth in the paper.
    "triangular":
        A basic triangular cycle w/ no amplitude scaling.
    "triangular2":
        A basic triangular cycle that scales initial amplitude by half each cycle.
    "exp_range":
        A cycle that scales initial amplitude by gamma**(cycle iterations) at each
        cycle iteration.
    For more detail, please see paper.

    # Example
        ```python
            clr = CyclicLR(base_lr=0.001, max_lr=0.006,
                                step_size=2000., mode='triangular')
            model.fit(X_train, Y_train, callbacks=[clr])
        ```

    Class also supports custom scaling functions:
        ```python
            clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))
            clr = CyclicLR(base_lr=0.001, max_lr=0.006,
                                step_size=2000., scale_fn=clr_fn,
                                scale_mode='cycle')
            model.fit(X_train, Y_train, callbacks=[clr])
        ```
    # Arguments
        base_lr: initial learning rate which is the
            lower boundary in the cycle.
        max_lr: upper boundary in the cycle. Functionally,
            it defines the cycle amplitude (max_lr - base_lr).
            The lr at any cycle is the sum of base_lr
            and some scaling of the amplitude; therefore
            max_lr may not actually be reached depending on
            scaling function.
        step_size: number of training iterations per
            half cycle. Authors suggest setting step_size
            2-8 x training iterations in epoch.
        mode: one of {triangular, triangular2, exp_range}.
            Default 'triangular'.
            Values correspond to policies detailed above.
            If scale_fn is not None, this argument is ignored.
        gamma: constant in 'exp_range' scaling function:
            gamma**(cycle iterations)
        scale_fn: Custom scaling policy defined by a single
            argument lambda function, where
            0 <= scale_fn(x) <= 1 for all x >= 0.
            mode paramater is ignored
        scale_mode: {'cycle', 'iterations'}.
            Defines whether scale_fn is evaluated on
            cycle number or cycle iterations (training
            iterations since start of cycle). Default is 'cycle'.
    """

    def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',
                 gamma=1., scale_fn=None, scale_mode='cycle'):
        super(CyclicLR, self).__init__()

        self.base_lr = base_lr
        self.max_lr = max_lr
        self.step_size = step_size
        self.mode = mode
        self.gamma = gamma
        if scale_fn == None:
            if self.mode == 'triangular':
                self.scale_fn = lambda x: 1.
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = lambda x: 1 / (2. ** (x - 1))
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = lambda x: gamma ** (x)
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        self.clr_iterations = 0.
        self.trn_iterations = 0.
        self.history = {}

        self._reset()

    def _reset(self, new_base_lr=None, new_max_lr=None,
               new_step_size=None):
        """Resets cycle iterations.
        Optional boundary/step size adjustment.
        """
        if new_base_lr != None:
            self.base_lr = new_base_lr
        if new_max_lr != None:
            self.max_lr = new_max_lr
        if new_step_size != None:
            self.step_size = new_step_size
        self.clr_iterations = 0.

    def clr(self):
        cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size))
        x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1)
        if self.scale_mode == 'cycle':
            return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(cycle)
        else:
            return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(
                self.clr_iterations)

    def on_train_begin(self, logs={}):
        logs = logs or {}

        if self.clr_iterations == 0:
            K.set_value(self.model.optimizer.lr, self.base_lr)
        else:
            K.set_value(self.model.optimizer.lr, self.clr())

    def on_batch_end(self, epoch, logs=None):

        logs = logs or {}
        self.trn_iterations += 1
        self.clr_iterations += 1

        self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
        self.history.setdefault('iterations', []).append(self.trn_iterations)

        for k, v in logs.items():
            self.history.setdefault(k, []).append(v)


        K.set_value(self.model.optimizer.lr, self.clr())

main.py文件

import keras
from keras.models import Model
import matplotlib.pyplot as  plt
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
import resnets_utils
import keras.backend as K
import numpy as np
from keras.optimizers import Adam
from keras.initializers import glorot_uniform
from clr_callback import CyclicLR

"""
获取数据  并将标签转换成one-hot
"""
def convert_data():
    train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes=resnets_utils.load_dataset()
    train_x=train_set_x_orig/255
    test_x = test_set_x_orig / 255
    train_y=resnets_utils.convert_to_one_hot(train_set_y_orig,6).T
    test_y = resnets_utils.convert_to_one_hot(test_set_y_orig, 6).T
    #print(train_y.shape)
    return train_x[:320,...],train_y[:320,...],test_x,test_y
if __name__=='__main__':
    train_x, train_y, test_x, test_y=convert_data()
    print(train_x.shape)
    print(train_y.shape)
    print(test_x.shape)
    print(test_y.shape)

    best_score=0
    classes=6
    Epcoh=50
    Batch=32

    input_shape=(64,64,3)
    X_input = keras.layers.Input(input_shape)
    X = keras.layers.Conv2D(filters=6, kernel_size=(3, 3), strides=(2, 2), name='conv1',
               kernel_initializer=glorot_uniform(seed=0))(X_input)
    print('第一次卷积尺寸={}'.format(X.shape))
    X=keras.layers.GlobalAveragePooling2D()(X)
    print(X.shape)
    Y=keras.layers.Dense(classes, activation='softmax', name='fc_class')(X)
    model = Model(inputs=X_input, outputs=Y)
    model.summary()
    keras.utils.plot_model(model,to_file='./model.jpg')

    lr = 1e-2
    clr = CyclicLR(base_lr=1e-5, max_lr=lr, step_size= Epcoh/ Batch * 2, mode='triangular2')
    adam = Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, amsgrad=True, )

    model.compile(optimizer=adam, loss='categorical_crossentropy',metrics=['acc']) #metrics=['mae', 'acc'])

    tb_callback=keras.callbacks.TensorBoard(log_dir='./logs/keras',
                                            histogram_freq=1,
                                            write_graph=True,
                                            write_images=1,
                                            write_grads=True
                                            )
    history = model.fit(x=train_x, y=train_y,
                                 batch_size=Batch,
                                 validation_data=(test_x, test_y),
                                 epochs=Epcoh,callbacks=[tb_callback,clr])

    acc=history.history['acc']
    loss = history.history['loss']
    val_acc = history.history['val_acc']
    val_loss = history.history['val_loss']
    print('acc=', acc)
    print('loss=', loss)
    print('val_acc=',val_acc)
    print('val_loss=',val_loss)


    score = model.evaluate(x=test_x, y=test_y,batch_size=Batch)
    print('loss=',score[0])
    print('test_acc',score[1])
    if score[1] > best_score:
        best_score = score[1]
        model.save('./model.h5', overwrite=True)


吴恩达作业11:残差网络实现手势数字的识别(基于 keras)+tensorbord显示loss值和acc值_第11张图片 

你可能感兴趣的:(keras)