C++11中std::forward的使用

std::forward argument: Returns an rvalue reference to arg if arg is not an lvalue reference; If arg is an lvalue reference, the function returns arg without modifying its type.

std::forward:This is a helper function to allow perfect forwarding of arguments taken as rvalue references to deduced types, preserving any potential move semantics involved. 

std::forward(u)有两个参数:T 与 u。当T为左值引用类型时,u将被转换为T类型的左值,否则u将被转换为T类型右值。如此定义std::forward是为了在使用右值引用参数的函数模板中解决参数的完美转发问题。

std::move是无条件的转为右值引用,而std::forward是有条件的转为右值引用,更准确的说叫做Perfect forwarding(完美转发),而std::forward里面蕴含着的条件则是Reference Collapsing(引用折叠)。

std::move不move任何东西。std::forward也不转发任何东西。在运行时,他们什么都不做。不产生可执行代码,一个比特的代码也不产生。

std::move和std::forward只是执行转换的函数(确切的说应该是函数模板)。std::move无条件的将它的参数转换成一个右值,而std::forward当特定的条件满足时,才会执行它的转换。

std::move表现为无条件的右值转换,就其本身而已,它不会移动任何东西。 std::forward仅当参数被右值绑定时,才会把参数转换为右值。 std::move和std::forward在运行时不做任何事情。

下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:

#include "forward.hpp"
#include 
#include 
#include 
#include 

//////////////////////////////////////////////
// reference: http://en.cppreference.com/w/cpp/utility/forward
struct A {
	A(int&& n) { std::cout << "rvalue overload, n=" << n << "\n"; }
	A(int& n)  { std::cout << "lvalue overload, n=" << n << "\n"; }
};

class B {
public:
	template
	B(T1&& t1, T2&& t2, T3&& t3) :
		a1_{ std::forward(t1) },
		a2_{ std::forward(t2) },
		a3_{ std::forward(t3) }
	{
	}

private:
	A a1_, a2_, a3_;
};

template
std::unique_ptr make_unique1(U&& u)
{
	return std::unique_ptr(new T(std::forward(u)));
}

template
std::unique_ptr make_unique(U&&... u)
{
	return std::unique_ptr(new T(std::forward(u)...));
}

int test_forward1()
{
	auto p1 = make_unique1(2); // rvalue
	int i = 1;
	auto p2 = make_unique1(i); // lvalue

	std::cout << "B\n";
	auto t = make_unique(2, i, 3);

	return 0;
}

////////////////////////////////////////////////////////
// reference: http://www.cplusplus.com/reference/utility/forward/
// function with lvalue and rvalue reference overloads:
void overloaded(const int& x) { std::cout << "[lvalue]"; }
void overloaded(int&& x) { std::cout << "[rvalue]"; }

// function template taking rvalue reference to deduced type:
template  void fn(T&& x) {
	overloaded(x);                   // always an lvalue
	overloaded(std::forward(x));  // rvalue if argument is rvalue
}

int test_forward2()
{
	int a;

	std::cout << "calling fn with lvalue: ";
	fn(a);
	std::cout << '\n';

	std::cout << "calling fn with rvalue: ";
	fn(0);
	std::cout << '\n';

	return 0;
}

//////////////////////////////////////////////////////
// reference: http://stackoverflow.com/questions/8526598/how-does-stdforward-work
template
struct some_struct{
	T _v;
	template
	some_struct(U&& v) : _v(static_cast(v)) {} // perfect forwarding here
	// std::forward is just syntactic sugar for this
};

int test_forward3()
{
	/* remember the reference collapsing rules(引用折叠规则):
	前者代表接受类型,后者代表进入类型,=>表示引用折叠之后的类型,即最后被推导决断的类型
	TR   R

	T&   &->T&   // lvalue reference to cv TR -> lvalue reference to T
	T&   &&->T&  // rvalue reference to cv TR -> TR (lvalue reference to T)
	T&&  &->T&   // lvalue reference to cv TR -> lvalue reference to T
	T&&  &&->T&& // rvalue reference to cv TR -> TR (rvalue reference to T) */

	some_struct s1(5);
	// in ctor: '5' is rvalue (int&&), so 'U' is deduced as 'int', giving 'int&&'
	// ctor after deduction: 'some_struct(int&& v)' ('U' == 'int')
	// with rvalue reference 'v' bound to rvalue '5'
	// now we 'static_cast' 'v' to 'U&&', giving 'static_cast(v)'
	// this just turns 'v' back into an rvalue
	// (named rvalue references, 'v' in this case, are lvalues)
	// huzzah, we forwarded an rvalue to the constructor of '_v'!

	// attention, real magic happens here
	int i = 5;
	some_struct s2(i);
	// in ctor: 'i' is an lvalue ('int&'), so 'U' is deduced as 'int&', giving 'int& &&'
	// applying the reference collapsing rules yields 'int&' (& + && -> &)
	// ctor after deduction and collapsing: 'some_struct(int& v)' ('U' == 'int&')
	// with lvalue reference 'v' bound to lvalue 'i'
	// now we 'static_cast' 'v' to 'U&&', giving 'static_cast(v)'
	// after collapsing rules: 'static_cast(v)'
	// this is a no-op, 'v' is already 'int&'
	// huzzah, we forwarded an lvalue to the constructor of '_v'!

	return 0;
}

////////////////////////////////////////////////////
// reference: https://oopscenities.net/2014/02/01/c11-perfect-forwarding/
void sum(int a, int b)
{
	std::cout << a + b << std::endl;
}

void concat(const std::string& a, const std::string& b)
{
	std::cout<< a + b << std::endl;
}

void successor(int a, int& b)
{
	b = ++a;
}

template 
void invoke(PROC p, A&& a, B&& b)
{
	p(std::forward(a), std::forward(b));
}

int test_forward4()
{
	invoke(sum, 10, 20);
	invoke(concat, "Hello", "world");
	int s = 0;
	invoke(successor, 10, s);
	std::cout << s << std::endl;

	return 0;
}

GitHub: https://github.com/fengbingchun/Messy_Test

你可能感兴趣的:(C/C++/C++11)