假如我们想把京东商城图书类的图片类商品图片全部下载到本地,通过手工复制粘贴将是一项非常庞大的工程,此时,可以用Python网络爬虫实现,这类爬虫称为图片爬虫,接下来,我们将实现该爬虫。
首先,打开要爬取的第一个网页,这个网页将作为要爬取的起始页面。我们打开京东,选择图书分类,由于图书所有种类的图书有很多,我们选择爬取所有编程语言的图书图片吧,网址为:https://list.jd.com/list.html?cat=1713,3287,3797&page=1&sort=sort_rank_asc&trans=1&JL=6_0_0#J_main
如图:
进去后,我们会发现总共有251页。
那么我们怎么才能自动爬取第一页以外的其他页面呢?
可以单击“下一页”,观察网址的变化。在单击了下一页之后,发现网址变成了https://list.jd.com/list.html?cat=1713,3287,3797&page=2&sort=sort_rank_asc&trans=1&JL=6_0_0#J_main。
我们可以发现,在这里要获取第几页是通过URL网址识别的,即通过GET方式请求的。在这个GET请求中,有多个字段,其中有一个字段为page,对应值为2,由此,我们可以得到该网址中的关键信息为:https://list.jd.com/list.html?cat=1713,3287,3797&page=2。接下来,我们根据推测,将page=2改成page=6,发现我们能够成功进入第6页。
由此,我们可以想到自动获取多个页面的方法:可以使用for循环实现,每次循环后,对应的网址中page字段加1,即自动切换到下一页。
在每页中,我们都要提取对应的图片,可以使用正则表达式匹配源码中图片的链接部分,然后通过urllib.request.urlretrieve()将对应链接的图片保存到本地。
但是这里有一个问题,该网页中的图片不仅包括列表中的商品图片,还包括旁边的一些无关图片,所以我们可以先进行一次信息过滤,第一次信息过滤将中间的商品列表部分数据留下,将其他部分的数据过滤掉。可以单击右键,然后查看网页的源代码,如图:
可以通过商品列表中的第一个商品名为“JAVA从入门到精通”快速定位到源码中的对应位置,然后观察其商品列表部分的特殊标识,可以看到,其上方有处“ 所以,如果要进行第一次过滤,我们的正则表达式可以构造为: 进行了第一次信息过滤后,留下来的图片链接就是我们想爬取的图片了,下一步需要在第一次过滤的基础上,再将图片链接信息过滤出来。 对比两张图片代码,发现其基本格式是一样的,只是图片的链接网址不一样,所以此时,我们根据该规律构造出提取图片链接的正则表达式: 刚开始到这里,我以为就结束了,后来在爬取的过程中我发现每一页都少爬取了很多图片,再次查看源码发现,每页后面的几十张图片又是另一种格式: 所以,完整的正则表达式应该是这两种格式的或: 到这里,我们根据该正则表达式,就可以提取出一个页面中所有想要爬取的图片链接。 所以,根据上面的分析,我们可以得到该爬虫的编写思路与过程,具体如下: 完整的代码如下:<div id="plist".+? <div class="page clearfix">
此时,需要观察网页中对应图片的源代码,我们观察到其中两张图片的对应源码:图片1:
<img width="200" height="200" data-img="1" src="//img13.360buyimg.com/n7/jfs/t6130/167/771989293/235186/608d0264/592bf167Naf49f7f6.jpg">
图片2:
<img width="200" height="200" data-img="1" src="//img10.360buyimg.com/n7/g14/M03/0E/0D/rBEhV1Im1n8IAAAAAAcHltD_3_8AAC0FgC-1WoABweu831.jpg">
<img width="200" height="200" data-img="1" src="//(.+?\.jpg)">
<img width="200" height="200" data-img="1" data-lazy-img="//img10.360buyimg.com/n7/jfs/t3226/230/618950227/110172/7749a8bc/57bb23ebNfe011bfe.jpg">
<img width="200" height="200" data-img="1" src="//(.+?\.jpg)">|<img width="200" height="200" data-img="1" data-lazy-img="//(.+?\.jpg)">
url='https://list.jd.com/list.html?cat=1713,3287,3797&page=' + str(i)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import re
import urllib.request
import urllib.error
import urllib.parse
sum = 0
def craw(url,page):
html1=urllib.request.urlopen(url).read()
html1=str(html1)
pat1=r'