Tensorflow学习(一)离散点拟合

# 这个程序是已知一些离散点 拟合出其平面 (W: [[0.100  0.200]], b: [0.300])
import tensorflow as tf
import numpy as np


        
x_data = np.float32(np.random.rand(100))
y_data = x_data*0.1 + 0.3


Weights =   tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))


y = Weights*x_data + biases


loss = tf.reduce_mean(tf.square(y-y_data))


optimizer = tf.train.GradientDescentOptimizer(0.5)


train = optimizer.minimize(loss)


init = tf.initialize_all_variables()


sess = tf.Session()
sess.run(init)


for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

你可能感兴趣的:(人工智能)