Hive中UDF、UDAF和UDTF使用

1.Hive中的内置函数

org.apache.hadoop.hive.ql.exec.FunctionRegistry类中定义了Hive目前内置的自定义函数

    registerGenericUDF("concat", GenericUDFConcat.class);
    registerUDF("substr", UDFSubstr.class, false);
    registerUDF("substring", UDFSubstr.class, false);
    registerUDF("space", UDFSpace.class, false);
    registerUDF("repeat", UDFRepeat.class, false);
    registerUDF("ascii", UDFAscii.class, false);
    registerGenericUDF("lpad", GenericUDFLpad.class);
    registerGenericUDF("rpad", GenericUDFRpad.class);

    registerUDF("ln", UDFLn.class, false);
    registerUDF("log2", UDFLog2.class, false);
    registerUDF("sin", UDFSin.class, false);
    registerUDF("asin", UDFAsin.class, false);
    registerUDF("cos", UDFCos.class, false);
    registerUDF("acos", UDFAcos.class, false);
    registerUDF("log10", UDFLog10.class, false);
    registerUDF("log", UDFLog.class, false);
    registerUDF("exp", UDFExp.class, false);
    registerGenericUDF("power", GenericUDFPower.class);
    registerGenericUDF("pow", GenericUDFPower.class);
    registerUDF("sign", UDFSign.class, false);
    registerUDF("pi", UDFPI.class, false);
    registerUDF("degrees", UDFDegrees.class, false);
    registerUDF("radians", UDFRadians.class, false);
    registerUDF("atan", UDFAtan.class, false);
    registerUDF("tan", UDFTan.class, false);
    registerUDF("e", UDFE.class, false);

    registerUDF("conv", UDFConv.class, false);
    registerUDF("bin", UDFBin.class, false);
    registerUDF("hex", UDFHex.class, false);
    registerUDF("unhex", UDFUnhex.class, false);
    registerUDF("base64", UDFBase64.class, false);
    registerUDF("unbase64", UDFUnbase64.class, false);

    registerGenericUDF("encode", GenericUDFEncode.class);
    registerGenericUDF("decode", GenericUDFDecode.class);

    registerGenericUDF("upper", GenericUDFUpper.class);
    registerGenericUDF("lower", GenericUDFLower.class);
    registerGenericUDF("ucase", GenericUDFUpper.class);
    registerGenericUDF("lcase", GenericUDFLower.class);
    registerGenericUDF("trim", GenericUDFTrim.class);
    registerGenericUDF("ltrim", GenericUDFLTrim.class);
    registerGenericUDF("rtrim", GenericUDFRTrim.class);
    registerUDF("length", UDFLength.class, false);
    registerUDF("reverse", UDFReverse.class, false);
    registerGenericUDF("field", GenericUDFField.class);
    registerUDF("find_in_set", UDFFindInSet.class, false);

    registerUDF("like", UDFLike.class, true);
    registerUDF("rlike", UDFRegExp.class, true);
    registerUDF("regexp", UDFRegExp.class, true);
    registerUDF("regexp_replace", UDFRegExpReplace.class, false);
    registerUDF("regexp_extract", UDFRegExpExtract.class, false);
    registerUDF("parse_url", UDFParseUrl.class, false);
    registerGenericUDF("nvl", GenericUDFNvl.class);
    registerGenericUDF("split", GenericUDFSplit.class);
    registerGenericUDF("str_to_map", GenericUDFStringToMap.class);
    registerGenericUDF("translate", GenericUDFTranslate.class);

    registerGenericUDF("date_add", GenericUDFDateAdd.class);
    registerGenericUDF("date_sub", GenericUDFDateSub.class);
    registerGenericUDF("datediff", GenericUDFDateDiff.class);

    registerUDF("get_json_object", UDFJson.class, false);




2.UDF

Hive的UDF开发只需要重构UDF类的evaluate函数即可。例:

package hive.connect;

import org.apache.hadoop.hive.ql.exec.UDF;

public final class Add extends UDF {
public Integer evaluate(Integer a, Integer b) {
               if (null == a || null == b) {
                               return null;
               } return a + b;
}

public Double evaluate(Double a, Double b) {
               if (a == null || b == null)
                               return null;
                               return a + b;
               }

public Integer evaluate(Integer... a) {
               int total = 0;
               for (int i = 0; i < a.length; i++)
                               if (a[i] != null)
                                             total += a[i];
                                              return total;
                               }
}



3.UDAF


1、一下两个包是必须的import org.apache.hadoop.hive.ql.exec.UDAF和 org.apache.hadoop.hive.ql.exec.UDAFEvaluator。
2、函数类需要继承UDAF类,内部类Evaluator实UDAFEvaluator接口。
3、Evaluator需要实现 init、iterate、terminatePartial、merge、terminate这几个函数。
a)init函数实现接口UDAFEvaluator的init函数。
b)iterate接收传入的参数,并进行内部的轮转。其返回类型为boolean。
c)terminatePartial无参数,其为iterate函数轮转结束后,返回轮转数据,terminatePartial类似于hadoop的Combiner。
d)merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean。
e)terminate返回最终的聚集函数结果。


package hive.udaf;

import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
public class Avg extends UDAF {
         public static class AvgState {
         private long mCount;
         private double mSum;
}

public static class AvgEvaluator implements UDAFEvaluator {
         AvgState state;
         public AvgEvaluator() {
                   super();
                   state = new AvgState();
                   init();
}

/** * init函数类似于构造函数,用于UDAF的初始化 */

public void init() {
         state.mSum = 0;
         state.mCount = 0;
}

/** * iterate接收传入的参数,并进行内部的轮转。其返回类型为boolean * * @param o * @return */

public boolean iterate(Double o) {
         if (o != null) {
                   state.mSum += o;
                   state.mCount++;
         } return true;
}

/** * terminatePartial无参数,其为iterate函数轮转结束后,返回轮转数据, * terminatePartial类似于hadoop的Combiner * * @return */

public AvgState terminatePartial() {
         // combiner
         return state.mCount == 0 ? null : state;
}

/** * merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean * * @param o * @return */

public boolean merge(Double o) {                
         if (o != null) {
                   state.mCount += o.mCount;
                   state.mSum += o.mSum;
         }

         return true;
}

/** * terminate返回最终的聚集函数结果 * * @return */

public Double terminate() {
         return state.mCount == 0 ? null : Double.valueOf(state.mSum / state.mCount);
}

}



4.UDTF

(1) 继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。

 (2)实现initialize, process, close三个方法。

UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理。

下面是我写的一个用来切分”key:value;key:value;”这种字符串,返回结果为key, value两个字段。供参考:

import java.util.ArrayList;
   
    import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
    import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
    import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
    import org.apache.hadoop.hive.ql.metadata.HiveException;
    import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
    import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
    import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
   import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
  
   public class ExplodeMap extends GenericUDTF{
  
       @Override
       public void close() throws HiveException {
           // TODO Auto-generated method stub    
       }
  
       @Override
       public StructObjectInspector initialize(ObjectInspector[] args)
               throws UDFArgumentException {
           if (args.length != 1) {
               throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
           }
           if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
               throw new UDFArgumentException("ExplodeMap takes string as a parameter");
           }
  
           ArrayList fieldNames = new ArrayList();
           ArrayList fieldOIs = new ArrayList();
           fieldNames.add("col1");
           fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
           fieldNames.add("col2");
           fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
  
           return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);
       }
  
      @Override
       public void process(Object[] args) throws HiveException {
           String input = args[0].toString();
           String[] test = input.split(";");
           for(int i=0; i



你可能感兴趣的:(大数据)