ReLu

ReLu是神经网络中的一个激活函数,其优于tanh和sigmoid函数。

1.为何引入非线性的激活函数?

如果不用激活函数,在这种情况下每一层输出都是上层输入的线性函数。容易验证,无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。因此引入非线性函数作为激活函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入。

2.引入ReLu的原因

第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。

第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,,从而无法完成深层网络的训练。

第三,ReLu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

你可能感兴趣的:(ReLu)