第一节 Spark2.3源码解析之spark2-submit程序提交流程

本系列”spark2源码解析”,均以最新spark2.3.0版本为蓝本进行编写,转载请注明出处

spark2-submit脚本应用程序提交流程

一 目录

1.打包程序提交的流程demo,注意cdh spark2.3.x已改为spark2-submit

2.spark-submit脚本会加载环境变量和jar包,启动spark launcher Main 类;

3.再启动deploy SparkSubmit类,调用里面submit方法执行doRunMain 设置系统参数,应用参数,childMain Path

4.最终调用runMain ,启动程序

二 明细

在spark-master/docs/submitting-applications.md可以看到很多demo

# Run application locally on 8 cores
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100

  # Run on a Spark standalone cluster in client deploy mode
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000

# Run on a Spark standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000

# Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn \
  --deploy-mode cluster \  # can be client for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000

首先,分析spark-submit脚本内容,实际是调用spark-class脚本


  #!/usr/bin/env bash

if [ -z "${SPARK_HOME}" ]; then
  source "$(dirname "$0")"/find-spark-home
fi

# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0

#spark-submit最终调用的是spark-class脚本
#传入的类是org.apache.spark.deploy.SparkSubmit
#及其它传入的参数,如deploy mode、executor-memory等
exec "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"

spark-submit 脚本会加载spark配置的环境变量信息,定位依赖包,增加启动器构建目录等,然后再调用org.apache.spark.launcher.Main正式启动Spark程序的运行,具体如下:

 #!/usr/bin/env bash


if [ -z "${SPARK_HOME}" ]; then
  source "$(dirname "$0")"/find-spark-home
fi

. "${SPARK_HOME}"/bin/load-spark-env.sh

# Find the java binary
# 找Java 环境
if [ -n "${JAVA_HOME}" ]; then
  RUNNER="${JAVA_HOME}/bin/java"
else
  if [ "$(command -v java)" ]; then
    RUNNER="java"
  else
    echo "JAVA_HOME is not set" >&2
    exit 1
  fi
fi

# Find Spark jars.
# 找spark依赖包
if [ -d "${SPARK_HOME}/jars" ]; then
  SPARK_JARS_DIR="${SPARK_HOME}/jars"
else
  SPARK_JARS_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION/jars"
fi

if [ ! -d "$SPARK_JARS_DIR" ] && [ -z "$SPARK_TESTING$SPARK_SQL_TESTING" ]; then
  echo "Failed to find Spark jars directory ($SPARK_JARS_DIR)." 1>&2
  echo "You need to build Spark with the target \"package\" before running this program." 1>&2
  exit 1
else
  LAUNCH_CLASSPATH="$SPARK_JARS_DIR/*"
fi

# Add the launcher build dir to the classpath if requested.
# 请求时增加启动器构建目录
if [ -n "$SPARK_PREPEND_CLASSES" ]; then
  LAUNCH_CLASSPATH="${SPARK_HOME}/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"
fi

# For tests
if [[ -n "$SPARK_TESTING" ]]; then
  unset YARN_CONF_DIR
  unset HADOOP_CONF_DIR
fi

# The launcher library will print arguments separated by a NULL character, to allow arguments with
# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating
# an array that will be used to exec the final command.
#
# The exit code of the launcher is appended to the output, so the parent shell removes it from the
# command array and checks the value to see if the launcher succeeded.
build_command() {
  "$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"
  printf "%d\0" $?
}

# Turn off posix mode since it does not allow process substitution
set +o posix
CMD=()
while IFS= read -d '' -r ARG; do
  CMD+=("$ARG")
done < <(build_command "$@")

COUNT=${#CMD[@]}
LAST=$((COUNT - 1))
LAUNCHER_EXIT_CODE=${CMD[$LAST]}

# Certain JVM failures result in errors being printed to stdout (instead of stderr), which causes
# the code that parses the output of the launcher to get confused. In those cases, check if the
# exit code is an integer, and if it's not, handle it as a special error case.
if ! [[ $LAUNCHER_EXIT_CODE =~ ^[0-9]+$ ]]; then
  echo "${CMD[@]}" | head -n-1 1>&2
  exit 1
fi

if [ $LAUNCHER_EXIT_CODE != 0 ]; then
  exit $LAUNCHER_EXIT_CODE
fi

CMD=("${CMD[@]:0:$LAST}")
exec "${CMD[@]}"

下面为Main.java的部分代码

class Main {
  public static void main(String[] argsArray) throws Exception {
    checkArgument(argsArray.length > 0, "Not enough arguments: missing class name.");

    List args = new ArrayList<>(Arrays.asList(argsArray));
    String className = args.remove(0);

    boolean printLaunchCommand = !isEmpty(System.getenv("SPARK_PRINT_LAUNCH_COMMAND"));
    AbstractCommandBuilder builder;
    if (className.equals("org.apache.spark.deploy.SparkSubmit")) {
      try {
        builder = new SparkSubmitCommandBuilder(args);
      } catch (IllegalArgumentException e) {
        printLaunchCommand = false;
        System.err.println("Error: " + e.getMessage());
        System.err.println();

        MainClassOptionParser parser = new MainClassOptionParser();
        try {
          parser.parse(args);
        } catch (Exception ignored) {
          // Ignore parsing exceptions.
        }

        List help = new ArrayList<>();
        if (parser.className != null) {
          help.add(parser.CLASS);
          help.add(parser.className);
        }
        help.add(parser.USAGE_ERROR);
        builder = new SparkSubmitCommandBuilder(help);
      }
    } else {
      builder = new SparkClassCommandBuilder(className, args);
    }

    ...
    }

从上述代码中,可以看到,需要先启动org.apache.spark.launcher.Main类,此类里调用org.apache.spark.deploy.SparkSubmit再执行,SparkSubmit的部分源码如下


def main(args: Array[String]): Unit = {
    val submit = new SparkSubmit()
    submit.doSubmit(args)
  }

def doSubmit(args: Array[String]): Unit = {
    // Initialize logging if it hasn't been done yet. Keep track of whether logging needs to
    // be reset before the application starts.
    val uninitLog = initializeLogIfNecessary(true, silent = true)

    val appArgs = parseArguments(args)
    if (appArgs.verbose) {
      logInfo(appArgs.toString)
    }
    appArgs.action match {
      case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)
      case SparkSubmitAction.KILL => kill(appArgs)
      case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
      case SparkSubmitAction.PRINT_VERSION => printVersion()
    }
  }

  /**
   * Submit the application using the provided parameters.
   *
   * This runs in two steps. First, we prepare the launch environment by setting up
   * the appropriate classpath, system properties, and application arguments for
   * running the child main class based on the cluster manager and the deploy mode.
   * Second, we use this launch environment to invoke the main method of the child
   * main class.
   */
  @tailrec
  private def submit(args: SparkSubmitArguments, uninitLog: Boolean): Unit = {
    val (childArgs, childClasspath, sparkConf, childMainClass) = prepareSubmitEnvironment(args)

    def doRunMain(): Unit = {
      if (args.proxyUser != null) {
        val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
          UserGroupInformation.getCurrentUser())
        try {
          proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
            override def run(): Unit = {
              runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose)
            }
          })
        } catch {
          case e: Exception =>
            // Hadoop's AuthorizationException suppresses the exception's stack trace, which
            // makes the message printed to the output by the JVM not very helpful. Instead,
            // detect exceptions with empty stack traces here, and treat them differently.
            if (e.getStackTrace().length == 0) {
              error(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}")
            } else {
              throw e
            }
        }
      } else {
        runMain(childArgs, childClasspath, sparkConf, childMainClass, args.verbose)
      }
    }

    // Let the main class re-initialize the logging system once it starts.
    if (uninitLog) {
      Logging.uninitialize()
    }

    // In standalone cluster mode, there are two submission gateways:
    //   (1) The traditional RPC gateway using o.a.s.deploy.Client as a wrapper
    //   (2) The new REST-based gateway introduced in Spark 1.3
    // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over
    // to use the legacy gateway if the master endpoint turns out to be not a REST server.
    if (args.isStandaloneCluster && args.useRest) {
      try {
        logInfo("Running Spark using the REST application submission protocol.")
      } catch {
        // Fail over to use the legacy submission gateway
        case e: SubmitRestConnectionException =>
          logWarning(s"Master endpoint ${args.master} was not a REST server. " +
            "Falling back to legacy submission gateway instead.")
          args.useRest = false
          submit(args, false)
      }
    // In all other modes, just run the main class as prepared
    } else {
      doRunMain()
    }
  }

最终调用的runMain


    /**
   * Run the main method of the child class using the provided launch environment.
   *
   * Note that this main class will not be the one provided by the user if we're
   * running cluster deploy mode or python applications.
   */
  private def runMain(
      childArgs: Seq[String],
      childClasspath: Seq[String],
      sparkConf: SparkConf,
      childMainClass: String,
      verbose: Boolean): Unit = {
    if (verbose) {
      logInfo(s"Main class:\n$childMainClass")
      logInfo(s"Arguments:\n${childArgs.mkString("\n")}")
      // sysProps may contain sensitive information, so redact before printing
      logInfo(s"Spark config:\n${Utils.redact(sparkConf.getAll.toMap).mkString("\n")}")
      logInfo(s"Classpath elements:\n${childClasspath.mkString("\n")}")
      logInfo("\n")
    }

    val loader =
      if (sparkConf.get(DRIVER_USER_CLASS_PATH_FIRST)) {
        new ChildFirstURLClassLoader(new Array[URL](0),
          Thread.currentThread.getContextClassLoader)
      } else {
        new MutableURLClassLoader(new Array[URL](0),
          Thread.currentThread.getContextClassLoader)
      }
    Thread.currentThread.setContextClassLoader(loader)

    for (jar <- childClasspath) {
      addJarToClasspath(jar, loader)
    }

    var mainClass: Class[_] = null

    try {
      mainClass = Utils.classForName(childMainClass)
    } catch {
      case e: ClassNotFoundException =>
        logWarning(s"Failed to load $childMainClass.", e)
        if (childMainClass.contains("thriftserver")) {
          logInfo(s"Failed to load main class $childMainClass.")
          logInfo("You need to build Spark with -Phive and -Phive-thriftserver.")
        }
        throw new SparkUserAppException(CLASS_NOT_FOUND_EXIT_STATUS)
      case e: NoClassDefFoundError =>
        logWarning(s"Failed to load $childMainClass: ${e.getMessage()}")
        if (e.getMessage.contains("org/apache/hadoop/hive")) {
          logInfo(s"Failed to load hive class.")
          logInfo("You need to build Spark with -Phive and -Phive-thriftserver.")
        }
        throw new SparkUserAppException(CLASS_NOT_FOUND_EXIT_STATUS)
    }

    val app: SparkApplication = if (classOf[SparkApplication].isAssignableFrom(mainClass)) {
      mainClass.newInstance().asInstanceOf[SparkApplication]
    } else {
      // SPARK-4170
      if (classOf[scala.App].isAssignableFrom(mainClass)) {
        logWarning("Subclasses of scala.App may not work correctly. Use a main() method instead.")
      }
      new JavaMainApplication(mainClass)
    }

    @tailrec
    def findCause(t: Throwable): Throwable = t match {
      case e: UndeclaredThrowableException =>
        if (e.getCause() != null) findCause(e.getCause()) else e
      case e: InvocationTargetException =>
        if (e.getCause() != null) findCause(e.getCause()) else e
      case e: Throwable =>
        e
    }

    try {
      app.start(childArgs.toArray, sparkConf)
    } catch {
      case t: Throwable =>
        throw findCause(t)
    }
  }

app.start(childArgs.toArray,sparkConf) 方法执行完毕,进入org.apache.spark.examples.SparkPi的main方法,执行spark应用程序.
至此,完成了整个spark应用提交过程.

☆┈━═┈━═┈━═┈━═┈━═☆因为您的赞赏,您会读到更多优质文章☆┈━═┈━═┈━═┈━═┈━═☆
第一节 Spark2.3源码解析之spark2-submit程序提交流程_第1张图片

你可能感兴趣的:(大数据,spark2)