利用TF_Object_detection_API 训练自己的模型

安装Tensorflow_Object_detection_API 依赖库

ProtobufPython-tkPillow 1.0lxmltf SlimJupyter notebookMatplotlibTensorflowCythoncocoapi

具体请参考:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

安装依赖库:(具体可参考官方文档)

下载源码:

git clone https://github.com/tensorflow/models
sudo apt-get install protobuf-compiler python-pil python-lxml python-tk
sudo pip3 install Cython
sudo pip3 install jupyter
sudo pip3 install matplotlib

#或者使用pip安装:
sudo pip install Cython
sudo pip install pillow
sudo pip install lxml
sudo pip install jupyter
sudo pip install matplotlib

如果使用COCO作为评价指标的话,需要接入coco的pythonApi,

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools /models/research/

编译项目

From tensorflow/models/research/

首先protoc编译项目,然后添加环境变量 Mac端: ~./bash_profile

protoc object_detection/protos/*.proto --python_out=.

export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

如果protoc版本过低,请对应环境下载 https://link.zhihu.com/?target=https%3A//github.com/google/protobuf/releases

sudo cp bin/protoc /usr/bin/protoc 再次尝试编译、添加环境

测试安装Ok:

python3 object_detection/builders/model_builder_test.py

# 如果返回Ok 则安装成功,运行setup 

python3 setup.py install

制作自己的数据集 并使用API传输训练

利用labelImag标注数据,生成xml信息,利用Xml-to-csv.py转换成voc的格式,xml-to-csv脚本:

注意按照自己的文件结构对应修改,我的结构:

-train_data/
  --...
-images/
  --test/
    ---testingimages.jpg
    ---image.xml
  --train/
    ---testingimages.jpg
    ---image.xml
  --..yourimages.jpg
-xml_to_csv.py
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET


def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df

def main():
    for directory in ['train','test']:
        image_path = os.path.join(os.getcwd(), 'images/{}'.format(directory))
        xml_df = xml_to_csv(image_path)
        xml_df.to_csv('train_data/{}_labels.csv'.format(directory), index=None)
        print('Successfully converted xml to csv.')

main()

将Csv格式的图片信息转换为tf_record格式,提供API训练

首先将上述的images、data移到model/research/object_detedtion文件夹下:利用generate_tfrecord.py转换格式

需要修改 返回的类别和名称 以及文件路径名

https://github.com/junqiangwu/My_Tensorflow/blob/master/object-detection/generate_tfrecord.py

##From model/research/object_detection/

python3 generate_tfrecord.py --csv_input=train_data/train_labels.csv  --output_path=train.record 

python3 generate_tfrecord.py --csv_input=train_data/test_labels.csv  --output_path=test.record 

会在object_detection目录下生成两个.record文件,将它移到train_data目录下,train_data目录下包含:两个csv 和 两个 .record

#object_detection目录下:
-images/
 --test/
  ---testingimages.jpg
 --train/
  ---testingimages.jpg
 --..yourimages.jpg						
-train_data	
 --train_labels.csv
 --test_labels.csv
 --train.record
 --test.record

下载预训练模型,配置网络结构信息:

wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz

mkdir trainingtraining文件夹下编写训练数据标签:object_detection.pbtxt
			item {
				  id: 1
				  name: 'macncheese' #物品类别
				 }

从object_detection/samples/config/ssd_mobilenet_v1_pets.config移到training文件下:并作出修改: num_class: 1 batch_size: 24 fine_tune_checkpoint: "ssd_mobilenet_v1_coco_11_06_2017/model.ckpt"

train_input_reader: {
	    tf_record_input_reader {
		input_path: "train_data/train.record"
		}
		label_map_path: "training/object-detection.pbtxt"
		}

最后在object_detection文件夹下:运行命令:

python3 train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config

#train_dir: 训练输出文件的路径 #pipeline_config: 网络配置文件的路径

#测试输出模型的准确性  利用.py 转换 .pb #From model/research/object_detection/ python3 export_inference_graph.py 
--input_type image_tensor 
--pipeline_config_path training/ssd_mobilenet_v1_pets.config 
--trained_checkpoint_prefix training/model.ckpt-388 
--output_directory mac_n_cheese_inference_graph

#input_type : 保持一致
#pipeline: 网络结构配置图
#train_checkpoint: ckpt模型保存路径 既上面训练路径的设置位置
#out: 输出文件

#最后利用jupyter notebook加载pb模型进行测试

#修改object_detection_tutorial.ipynb

# What model to download.
MODEL_NAME = 'mac_n_cheese_inference_graph'

#Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'object-detection.pbtxt')

NUM_CLASSES = 1

#删除downloand程序,修改加载测试图片的路径,运行即可
所有的配置文件在:https://github.com/junqiangwu/My_Tensorflow/tree/master/object-detection

你可能感兴趣的:(Tensorflow)