Transformer开源实现(二)

这篇主要学习model.py,modules.py也就是Transformer模型和它的主要构成模块。

positional_encoding:生成一个位置embedding, 句子中的单词根据位置查这个embedding.

tf.where(tensor,a, b):a,b为和tensor相同维度的tensor,将tensor中的True位置元素替换为a中对应位置元素,False的替换为b中对应位置元素

tf.equal: https://blog.csdn.net/ustbbsy/article/details/79564529

def positional_encoding(inputs,
                        maxlen,
                        masking=True,
                        scope="positional_encoding"):
    '''Sinusoidal Positional_Encoding. See 3.5
    inputs: 3d tensor. (N, T, E)
    maxlen: scalar. Must be >= T
    masking: Boolean. If True, padding positions are set to zeros.
    scope: Optional scope for `variable_scope`.

    returns
    3d tensor that has the same shape as inputs.
    '''

    E = inputs.get_shape().as_list()[-1] # static
    N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        # position indices
        position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # (N, T)

        # First part of the PE function: sin and cos argument
        position_enc = np.array([
            [pos / np.power(10000, (i-i%2)/E) for i in range(E)]
            for pos in range(maxlen)]) #生成了一个(maxlen, E)的embedding

        # Second part, apply the cosine to even columns and sin to odds.
        position_enc[:, 0::2] = np.sin(position_enc[:, 0::2])  # dim 2i
        position_enc[:, 1::2] = np.cos(position_enc[:, 1::2])  # dim 2i+1
        position_enc = tf.convert_to_tensor(position_enc, tf.float32) # (maxlen, E)

        # lookup
        outputs = tf.nn.embedding_lookup(position_enc, position_ind)

        # masks
        if masking:
            outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)

        return tf.to_float(outputs)

multihead_attention:

三个tf.layers.dense()相当于与三个矩阵(Wq, Wk, Wv)相乘。

tf.split: https://www.orchome.com/1563  先按指定维度拆分,然后再把拆分后的合并。

Q_,K_, V_分别是将Q,K,V按最后一个维度切分后,再按第一个维度拼到一块的,例如,Q_就包含了所有multihead attention要用到的q, 将它们堆叠到一块了。

def multihead_attention(queries, keys, values,
                        num_heads=8, 
                        dropout_rate=0,
                        training=True,
                        causality=False,
                        scope="multihead_attention"):
    '''Applies multihead attention. See 3.2.2
    queries: A 3d tensor with shape of [N, T_q, d_model].
    keys: A 3d tensor with shape of [N, T_k, d_model].
    values: A 3d tensor with shape of [N, T_k, d_model].
    num_heads: An int. Number of heads.
    dropout_rate: A floating point number.
    training: Boolean. Controller of mechanism for dropout.
    causality: Boolean. If true, units that reference the future are masked.
    scope: Optional scope for `variable_scope`.
        
    Returns
      A 3d tensor with shape of (N, T_q, C)  
    '''
    d_model = queries.get_shape().as_list()[-1]
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        # Linear projections
        Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model)
        K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model)
        V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model)
        
        # Split and concat
        Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h)
        K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
        V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)

        # Attention
        outputs = scaled_dot_product_attention(Q_, K_, V_, causality, dropout_rate, training)

        # Restore shape
        outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, d_model)
              
        # Residual connection
        outputs += queries
              
        # Normalize
        outputs = ln(outputs)
 
    return outputs

scaled_dot_product_attention: 传入的是切分后的,用于multihead attention的Q,K,V。

def scaled_dot_product_attention(Q, K, V,
                                 causality=False, dropout_rate=0.,
                                 training=True,
                                 scope="scaled_dot_product_attention"):
    '''See 3.2.1.
    Q: Packed queries. 3d tensor. [N, T_q, d_k].
    K: Packed keys. 3d tensor. [N, T_k, d_k].
    V: Packed values. 3d tensor. [N, T_k, d_v].
    causality: If True, applies masking for future blinding
    dropout_rate: A floating point number of [0, 1].
    training: boolean for controlling droput
    scope: Optional scope for `variable_scope`.
    '''
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
        d_k = Q.get_shape().as_list()[-1]

        # dot product,transpose为了使维度能够匹配,得到一个N,T_q, T_q的tensor
        outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1]))  # (N, T_q, T_k) 

        # scale
        outputs /= d_k ** 0.5

        # key masking
        outputs = mask(outputs, Q, K, type="key")

        # causality or future blinding masking
        if causality:
            outputs = mask(outputs, type="future")

        # softmax
        outputs = tf.nn.softmax(outputs)
        attention = tf.transpose(outputs, [0, 2, 1])
        tf.summary.image("attention", tf.expand_dims(attention[:1], -1))

        # query masking
        outputs = mask(outputs, Q, K, type="query")

        # dropout
        outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)

        # weighted sum (context vectors)
        outputs = tf.matmul(outputs, V)  # (N, T_q, d_v)

    return outputs

mask:

def mask(inputs, queries=None, keys=None, type=None):
    """Masks paddings on keys or queries to inputs
    inputs: 3d tensor. (N, T_q, T_k)
    queries: 3d tensor. (N, T_q, d)
    keys: 3d tensor. (N, T_k, d)

    e.g.,
    >> queries = tf.constant([[[1.],
                        [2.],
                        [0.]]], tf.float32) # (1, 3, 1)
    >> keys = tf.constant([[[4.],
                     [0.]]], tf.float32)  # (1, 2, 1)
    >> inputs = tf.constant([[[4., 0.],
                               [8., 0.],
                               [0., 0.]]], tf.float32)
    >> mask(inputs, queries, keys, "key")
    array([[[ 4.0000000e+00, -4.2949673e+09],
        [ 8.0000000e+00, -4.2949673e+09],
        [ 0.0000000e+00, -4.2949673e+09]]], dtype=float32)
    >> inputs = tf.constant([[[1., 0.],
                             [1., 0.],
                              [1., 0.]]], tf.float32)
    >> mask(inputs, queries, keys, "query")
    array([[[1., 0.],
        [1., 0.],
        [0., 0.]]], dtype=float32)
    """
    padding_num = -2 ** 32 + 1
    if type in ("k", "key", "keys"):
        # Generate masks
        masks = tf.sign(tf.reduce_sum(tf.abs(keys), axis=-1))  # (N, T_k)
        masks = tf.expand_dims(masks, 1) # (N, 1, T_k)
        masks = tf.tile(masks, [1, tf.shape(queries)[1], 1])  # (N, T_q, T_k)

        # Apply masks to inputs
        paddings = tf.ones_like(inputs) * padding_num
        outputs = tf.where(tf.equal(masks, 0), paddings, inputs)  # (N, T_q, T_k)
    elif type in ("q", "query", "queries"):
        # Generate masks
        masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1))  # (N, T_q)
        masks = tf.expand_dims(masks, -1)  # (N, T_q, 1)
        masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]])  # (N, T_q, T_k)

        # Apply masks to inputs
        outputs = inputs*masks
    elif type in ("f", "future", "right"):
        diag_vals = tf.ones_like(inputs[0, :, :])  # (T_q, T_k)
        tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense()  # (T_q, T_k)
        masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1])  # (N, T_q, T_k)

        paddings = tf.ones_like(masks) * padding_num
        outputs = tf.where(tf.equal(masks, 0), paddings, inputs)
    else:
        print("Check if you entered type correctly!")


    return outputs

encode:

    def encode(self, xs, training=True):
        '''
        Returns
        memory: encoder outputs. (N, T1, d_model)
        '''
        with tf.variable_scope("encoder", reuse=tf.AUTO_REUSE):
            x, seqlens, sents1 = xs

            # embedding
            enc = tf.nn.embedding_lookup(self.embeddings, x) # (N, T1, d_model)
            enc *= self.hp.d_model**0.5 # scale

            enc += positional_encoding(enc, self.hp.maxlen1)
            enc = tf.layers.dropout(enc, self.hp.dropout_rate, training=training)

            ## Blocks
            for i in range(self.hp.num_blocks):
                with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
                    # self-attention
                    enc = multihead_attention(queries=enc,
                                              keys=enc,
                                              values=enc,
                                              num_heads=self.hp.num_heads,
                                              dropout_rate=self.hp.dropout_rate,
                                              training=training,
                                              causality=False)
                    # feed forward
                    enc = ff(enc, num_units=[self.hp.d_ff, self.hp.d_model])
        memory = enc
        return memory, sents1

 

你可能感兴趣的:(tensorflow)