这篇主要学习model.py,modules.py也就是Transformer模型和它的主要构成模块。
positional_encoding:生成一个位置embedding, 句子中的单词根据位置查这个embedding.
tf.where(tensor,a, b):a,b为和tensor相同维度的tensor,将tensor中的True位置元素替换为a中对应位置元素,False的替换为b中对应位置元素
tf.equal: https://blog.csdn.net/ustbbsy/article/details/79564529
def positional_encoding(inputs,
maxlen,
masking=True,
scope="positional_encoding"):
'''Sinusoidal Positional_Encoding. See 3.5
inputs: 3d tensor. (N, T, E)
maxlen: scalar. Must be >= T
masking: Boolean. If True, padding positions are set to zeros.
scope: Optional scope for `variable_scope`.
returns
3d tensor that has the same shape as inputs.
'''
E = inputs.get_shape().as_list()[-1] # static
N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# position indices
position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # (N, T)
# First part of the PE function: sin and cos argument
position_enc = np.array([
[pos / np.power(10000, (i-i%2)/E) for i in range(E)]
for pos in range(maxlen)]) #生成了一个(maxlen, E)的embedding
# Second part, apply the cosine to even columns and sin to odds.
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1
position_enc = tf.convert_to_tensor(position_enc, tf.float32) # (maxlen, E)
# lookup
outputs = tf.nn.embedding_lookup(position_enc, position_ind)
# masks
if masking:
outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)
return tf.to_float(outputs)
multihead_attention:
三个tf.layers.dense()相当于与三个矩阵(Wq, Wk, Wv)相乘。
tf.split: https://www.orchome.com/1563 先按指定维度拆分,然后再把拆分后的合并。
Q_,K_, V_分别是将Q,K,V按最后一个维度切分后,再按第一个维度拼到一块的,例如,Q_就包含了所有multihead attention要用到的q, 将它们堆叠到一块了。
def multihead_attention(queries, keys, values,
num_heads=8,
dropout_rate=0,
training=True,
causality=False,
scope="multihead_attention"):
'''Applies multihead attention. See 3.2.2
queries: A 3d tensor with shape of [N, T_q, d_model].
keys: A 3d tensor with shape of [N, T_k, d_model].
values: A 3d tensor with shape of [N, T_k, d_model].
num_heads: An int. Number of heads.
dropout_rate: A floating point number.
training: Boolean. Controller of mechanism for dropout.
causality: Boolean. If true, units that reference the future are masked.
scope: Optional scope for `variable_scope`.
Returns
A 3d tensor with shape of (N, T_q, C)
'''
d_model = queries.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Linear projections
Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model)
K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model)
V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model)
# Split and concat
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
# Attention
outputs = scaled_dot_product_attention(Q_, K_, V_, causality, dropout_rate, training)
# Restore shape
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, d_model)
# Residual connection
outputs += queries
# Normalize
outputs = ln(outputs)
return outputs
scaled_dot_product_attention: 传入的是切分后的,用于multihead attention的Q,K,V。
def scaled_dot_product_attention(Q, K, V,
causality=False, dropout_rate=0.,
training=True,
scope="scaled_dot_product_attention"):
'''See 3.2.1.
Q: Packed queries. 3d tensor. [N, T_q, d_k].
K: Packed keys. 3d tensor. [N, T_k, d_k].
V: Packed values. 3d tensor. [N, T_k, d_v].
causality: If True, applies masking for future blinding
dropout_rate: A floating point number of [0, 1].
training: boolean for controlling droput
scope: Optional scope for `variable_scope`.
'''
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
d_k = Q.get_shape().as_list()[-1]
# dot product,transpose为了使维度能够匹配,得到一个N,T_q, T_q的tensor
outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k)
# scale
outputs /= d_k ** 0.5
# key masking
outputs = mask(outputs, Q, K, type="key")
# causality or future blinding masking
if causality:
outputs = mask(outputs, type="future")
# softmax
outputs = tf.nn.softmax(outputs)
attention = tf.transpose(outputs, [0, 2, 1])
tf.summary.image("attention", tf.expand_dims(attention[:1], -1))
# query masking
outputs = mask(outputs, Q, K, type="query")
# dropout
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)
# weighted sum (context vectors)
outputs = tf.matmul(outputs, V) # (N, T_q, d_v)
return outputs
mask:
def mask(inputs, queries=None, keys=None, type=None):
"""Masks paddings on keys or queries to inputs
inputs: 3d tensor. (N, T_q, T_k)
queries: 3d tensor. (N, T_q, d)
keys: 3d tensor. (N, T_k, d)
e.g.,
>> queries = tf.constant([[[1.],
[2.],
[0.]]], tf.float32) # (1, 3, 1)
>> keys = tf.constant([[[4.],
[0.]]], tf.float32) # (1, 2, 1)
>> inputs = tf.constant([[[4., 0.],
[8., 0.],
[0., 0.]]], tf.float32)
>> mask(inputs, queries, keys, "key")
array([[[ 4.0000000e+00, -4.2949673e+09],
[ 8.0000000e+00, -4.2949673e+09],
[ 0.0000000e+00, -4.2949673e+09]]], dtype=float32)
>> inputs = tf.constant([[[1., 0.],
[1., 0.],
[1., 0.]]], tf.float32)
>> mask(inputs, queries, keys, "query")
array([[[1., 0.],
[1., 0.],
[0., 0.]]], dtype=float32)
"""
padding_num = -2 ** 32 + 1
if type in ("k", "key", "keys"):
# Generate masks
masks = tf.sign(tf.reduce_sum(tf.abs(keys), axis=-1)) # (N, T_k)
masks = tf.expand_dims(masks, 1) # (N, 1, T_k)
masks = tf.tile(masks, [1, tf.shape(queries)[1], 1]) # (N, T_q, T_k)
# Apply masks to inputs
paddings = tf.ones_like(inputs) * padding_num
outputs = tf.where(tf.equal(masks, 0), paddings, inputs) # (N, T_q, T_k)
elif type in ("q", "query", "queries"):
# Generate masks
masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q)
masks = tf.expand_dims(masks, -1) # (N, T_q, 1)
masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]]) # (N, T_q, T_k)
# Apply masks to inputs
outputs = inputs*masks
elif type in ("f", "future", "right"):
diag_vals = tf.ones_like(inputs[0, :, :]) # (T_q, T_k)
tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1]) # (N, T_q, T_k)
paddings = tf.ones_like(masks) * padding_num
outputs = tf.where(tf.equal(masks, 0), paddings, inputs)
else:
print("Check if you entered type correctly!")
return outputs
encode:
def encode(self, xs, training=True):
'''
Returns
memory: encoder outputs. (N, T1, d_model)
'''
with tf.variable_scope("encoder", reuse=tf.AUTO_REUSE):
x, seqlens, sents1 = xs
# embedding
enc = tf.nn.embedding_lookup(self.embeddings, x) # (N, T1, d_model)
enc *= self.hp.d_model**0.5 # scale
enc += positional_encoding(enc, self.hp.maxlen1)
enc = tf.layers.dropout(enc, self.hp.dropout_rate, training=training)
## Blocks
for i in range(self.hp.num_blocks):
with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
# self-attention
enc = multihead_attention(queries=enc,
keys=enc,
values=enc,
num_heads=self.hp.num_heads,
dropout_rate=self.hp.dropout_rate,
training=training,
causality=False)
# feed forward
enc = ff(enc, num_units=[self.hp.d_ff, self.hp.d_model])
memory = enc
return memory, sents1