TensorFlow使用CNN实现中文文本分类

TensorFlow使用CNN实现中文文本分类

    读研期间使用过TensorFlow实现过简单的CNN情感分析(分类),当然这是比较low的二分类情况,后来进行多分类情况。但之前的学习基本上都是在英文词库上训练的。断断续续,想整理一下手头的项目资料,于是就拾起读研期间的文本分类的小项目,花了一点时间,把原来英文文本分类的项目,应用在中文文本分类,效果还不错,在THUCNews中文数据集上,准确率93.9%左右,老规矩,先上源码地址

    Github项目源码:https://github.com/PanJinquan/nlp-learning-tutorials/tree/master/THUCNews, 记得给个“Star”哈


目录

TensorFlow使用CNN实现中文文本分类

一、项目介绍

1.1 目录结构

1.2 THUCNews数据集

二、CNN模型结构

三、文本预处理

1、jieba中文分词

2、gensim训练word2vec模型

四、训练过程

五、测试过程


一、项目介绍

1.1 目录结构

  Github项目源码:https://github.com/PanJinquan/nlp-learning-tutorials/tree/master/THUCNews, 记得给个“Star”哈

其他资源地址:

  • 1.THUCTC官方数据集,链接: http://thuctc.thunlp.org/message
  • 2.THUCTC百度网盘,链接: https://pan.baidu.com/s/1DT5xY9m2yfu1YGaGxpWiBQ 提取码: bbpe
  • 3.已经训练好的word2vec模型:链接: https://pan.baidu.com/s/1n4ZgiF0gbY0zsK0706wZiw 提取码: mtrj
  • 4.使用词向量处理的THUCNews数据:链接: https://pan.baidu.com/s/12Hdf36QafQ3y6KgV_vLTsw 提取码: m9dx

TensorFlow使用CNN实现中文文本分类_第1张图片

1.2 THUCNews数据集

    THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。我们在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。相关介绍,可以看这里http://thuctc.thunlp.org/

下载地址:
1.官方数据集下载链接: http://thuctc.thunlp.org/message
2.百度网盘下载链接: https://pan.baidu.com/s/1DT5xY9m2yfu1YGaGxpWiBQ 提取码: bbpe

二、CNN模型结构

CNN文本分类的网络结,如下:

TensorFlow使用CNN实现中文文本分类_第2张图片

简单分析一下:

(1)我们假定输入CNN的数据是二维的,其中每一行表示一个样本(即一个字词),如图中“I”、“like”等。每一个样本(字词)有d个维度,可以看成是词向量长度,即每个字词的维度,程序中用embedding_dim表示。

(2)使用CNN的卷积对这个二维数据进行卷积:在图像的CNN卷积中,卷积核的大小一般是3*3,5*5等,但在NLP中就不就不能这么搞了,因为这里的输入数据每行是一个样本了!假设卷积核的大小为[filter_height,filter_width],那么卷积核的高度filter_height可以为1,2,3等任意值,而宽度filter_width只能是embedding_dim的大小,这样才能把完整的样本框进去!

    下面是使用TensorFlow实现的CNN文本分类网络:TextCNN,

 max_sentence_length = 300 # 最大句子长度,也就是说文本样本中字词的最大长度,不足补零,多余的截断
 embedding_dim = 128 #词向量长度,即每个字词的维度
 filter_sizes = [3, 4, 5, 6] #卷积核大小
 num_filters = 200  # Number of filters per filter size 卷价个数
 base_lr=0.001      # 学习率
 dropout_keep_prob = 0.5
 l2_reg_lambda = 0.0  # "L2 regularization lambda (default: 0.0)

import tensorflow as tf
import numpy as np


class TextCNN(object):
    '''
    A CNN for text classification
    Uses and embedding layer, followed by a convolutional, max-pooling and softmax layer.
    '''
    def __init__(
        self, sequence_length, num_classes,
        embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):

        # Placeholders for input, output, dropout
        self.input_x = tf.placeholder(tf.float32, [None, sequence_length, embedding_size], name = "input_x")
        self.input_y = tf.placeholder(tf.float32, [None, num_classes], name = "input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name = "dropout_keep_prob")
	    
	    # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0)

	    # Embedding layer
            # self.embedded_chars = [None(batch_size), sequence_size, embedding_size]
            # self.embedded_chars = [None(batch_size), sequence_size, embedding_size, 1(num_channels)]
        self.embedded_chars = self.input_x
        self.embedded_chars_expended = tf.expand_dims(self.embedded_chars, -1)

	    # Create a convolution + maxpool layer for each filter size
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):# "filter_sizes", "3,4,5",
            
            with tf.name_scope("conv-maxpool-%s" % filter_size):
	            # Convolution layer
                filter_shape = [filter_size, embedding_size, 1, num_filters] # num_filters= 200
                # filter_shape =[height, width, in_channels, output_channels]

                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                conv = tf.nn.conv2d(self.embedded_chars_expended,
		                            W,
		                            strides=[1,1,1,1],
		                            padding="VALID",
		                            name="conv")
		        # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name = "relu")
		        # Maxpooling over the outputs
                pooled = tf.nn.max_pool(
		        h,
		        ksize=[1, sequence_length - filter_size + 1, 1, 1],
		        strides=[1,1,1,1],
		        padding="VALID",
		        name="pool")
                pooled_outputs.append(pooled)

	    # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs, 3)
        # self.h_pool = tf.concat(3, pooled_outputs)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

	    # Add dropout
        with tf.name_scope("dropout"):
	        self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
	    
	    # Final (unnomalized) scores and predictions
        with tf.name_scope("output"):
            W = tf.get_variable(
		                            "W",
		                            shape = [num_filters_total, num_classes],
                                    initializer = tf.contrib.layers.xavier_initializer())
            
            b = tf.Variable(tf.constant(0.1, shape=[num_classes], name = "b"))
            l2_loss += tf.nn.l2_loss(W)
            l2_loss += tf.nn.l2_loss(b)
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name = "scores")
            self.predictions = tf.argmax(self.scores, 1, name = "predictions")

	    # Calculate Mean cross-entropy loss
        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(logits = self.scores, labels = self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
	    
	    # Accuracy
        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name = "accuracy")

三、文本预处理

    本博客使用jieba工具进行中文分词,使用词进行训练会比使用字进行训练,效果更好。

    这部分:已经在《使用gensim训练中文语料word2vec》https://blog.csdn.net/guyuealian/article/details/84072158,详解讲解,自己看吧!

1、jieba中文分词

    这个需要自己安装:pip install jieba 或者pip3 install jieba

2、gensim训练word2vec模型

   这里使用jieba工具对THUCNews数据集进行分词,并利用gensim训练基于THUCNews的word2vec模型,这里提供已经训练好的word2vec模型:链接: https://pan.baidu.com/s/1n4ZgiF0gbY0zsK0706wZiw 提取码: mtrj 

2、THUCNews数据处理

   有了word2vec模型,我就可以用word2vec词向量处理THUCNews数据:先使用jieba工具将中文句子转为字词,再将字词根据word2vec模型转为embadding 的索引,有了索引就可以获得词向量embadding  。这里并把这些索引数据保存为npy文件。后续训练时,CNN网络只需要读取这些npy文件,并将索引转为embadding,就可以进行训练了。

处理好的THUCNews数据下载地址:链接: https://pan.baidu.com/s/12Hdf36QafQ3y6KgV_vLTsw 提取码: m9dx 

    下面的代码实现的功能:使用jieba工具将中文句子转为字词,再将字词根据word2vec模型转为embadding 的索引矩阵,然后把这些索引矩阵保存下来(*.npy文件),源代码中batchSize=20000表示:将20000中文TXT文件处理成字词,转为索引矩阵并保存为一个*.npy文件,相当于将20000中文TXT文件保存为一个*.npy文件,主要是为了压缩数据,避免单个文件过大的情况。

# -*-coding: utf-8 -*-
"""
    @Project: nlp-learning-tutorials
    @File   : create_word2vec.py
    @Author : panjq
    @E-mail : [email protected]
    @Date   : 2018-11-08 17:37:21
"""
from gensim.models import Word2Vec
import random
import numpy as np
import os
import math
from utils import files_processing,segment


def info_npy(file_list):
    sizes=0
    for file in file_list:
        data = np.load(file)
        print("data.shape:{}".format(data.shape))
        size = data.shape[0]
        sizes+=size
    print("files nums:{}, data nums:{}".format(len(file_list), sizes))
    return sizes

def save_multi_file(files_list,labels_list,word2vec_path,out_dir,prefix,batchSize,max_sentence_length,labels_set=None,shuffle=False):
    '''
    将文件内容映射为索引矩阵,并且将数据保存为多个文件
    :param files_list:
    :param labels_list:
    :param word2vec_path: word2vec模型的位置
    :param out_dir: 文件保存的目录
    :param prefix:  保存文件的前缀名
    :param batchSize: 将多个文件内容保存为一个文件
    :param labels_set: labels集合
    :return:
    '''
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)

    # 把该目录下的所有文件都删除
    files_processing.delete_dir_file(out_dir)

    if shuffle:
        random.seed(100)
        random.shuffle(files_list)
        random.seed(100)
        random.shuffle(labels_list)

    sample_num = len(files_list)
    w2vModel=load_wordVectors(word2vec_path)
    if labels_set is None:
        labels_set= files_processing.get_labels_set(label_list)

    labels_list, labels_set = files_processing.labels_encoding(labels_list, labels_set)
    labels_list=labels_list.tolist()
    batchNum = int(math.ceil(1.0 * sample_num / batchSize))
    for i in range(batchNum):
        start = i * batchSize
        end = min((i + 1) * batchSize, sample_num)
        batch_files = files_list[start:end]
        batch_labels = labels_list[start:end]

        # 读取文件内容,字词分割
        batch_content = files_processing.read_files_list_to_segment(batch_files,
                                                                    max_sentence_length,
                                                                    padding_token='',
                                                                    segment_type='word')
        # 将字词转为索引矩阵
        batch_indexMat = word2indexMat(w2vModel, batch_content, max_sentence_length)
        batch_labels=np.asarray(batch_labels)
        batch_labels = batch_labels.reshape([len(batch_labels), 1])

        # 保存*.npy文件
        filename = os.path.join(out_dir,prefix + '{0}.npy'.format(i))
        labels_indexMat = cat_labels_indexMat(batch_labels, batch_indexMat)
        np.save(filename, labels_indexMat)
        print('step:{}/{}, save:{}, data.shape{}'.format(i,batchNum,filename,labels_indexMat.shape))


def cat_labels_indexMat(labels,indexMat):
    indexMat_labels = np.concatenate([labels,indexMat], axis=1)
    return indexMat_labels

def split_labels_indexMat(indexMat_labels,label_index=0):
    labels = indexMat_labels[:, 0:label_index+1]     # 第一列是labels
    indexMat = indexMat_labels[:, label_index+1:]  # 其余是indexMat
    return labels, indexMat

def load_wordVectors(word2vec_path):
    w2vModel = Word2Vec.load(word2vec_path)
    return w2vModel

def word2vector_lookup(w2vModel, sentences):
    '''
    将字词转换为词向量
    :param w2vModel: word2vector模型
    :param sentences: type->list[list[str]]
    :return: sentences对应的词向量,type->list[list[ndarray[list]]
    '''
    all_vectors = []
    embeddingDim = w2vModel.vector_size
    embeddingUnknown = [0 for i in range(embeddingDim)]
    for sentence in sentences:
        this_vector = []
        for word in sentence:
            if word in w2vModel.wv.vocab:
                v=w2vModel[word]
                this_vector.append(v)
            else:
                this_vector.append(embeddingUnknown)
        all_vectors.append(this_vector)
    all_vectors=np.array(all_vectors)
    return all_vectors

def word2indexMat(w2vModel, sentences, max_sentence_length):
    '''
    将字词word转为索引矩阵
    :param w2vModel:
    :param sentences:
    :param max_sentence_length:
    :return:
    '''
    nums_sample=len(sentences)
    indexMat = np.zeros((nums_sample, max_sentence_length), dtype='int32')
    rows = 0
    for sentence in sentences:
        indexCounter = 0
        for word in sentence:
            try:
                index = w2vModel.wv.vocab[word].index  # 获得单词word的下标
                indexMat[rows][indexCounter] = index
            except :
                indexMat[rows][indexCounter] = 0  # Vector for unkown words
            indexCounter = indexCounter + 1
            if indexCounter >= max_sentence_length:
                break
        rows+=1
    return indexMat

def indexMat2word(w2vModel, indexMat, max_sentence_length=None):
    '''
    将索引矩阵转为字词word
    :param w2vModel:
    :param indexMat:
    :param max_sentence_length:
    :return:
    '''
    if max_sentence_length is None:
        row,col =indexMat.shape
        max_sentence_length=col
    sentences=[]
    for Mat in indexMat:
        indexCounter = 0
        sentence=[]
        for index in Mat:
            try:
                word = w2vModel.wv.index2word[index] # 获得单词word的下标
                sentence+=[word]
            except :
                sentence+=['']
            indexCounter = indexCounter + 1
            if indexCounter >= max_sentence_length:
                break
        sentences.append(sentence)
    return sentences

def save_indexMat(indexMat,path):
    np.save(path, indexMat)

def load_indexMat(path):
    indexMat = np.load(path)
    return indexMat

def indexMat2vector_lookup(w2vModel,indexMat):
    '''
    将索引矩阵转为词向量
    :param w2vModel:
    :param indexMat:
    :return: 词向量
    '''
    all_vectors = w2vModel.wv.vectors[indexMat]
    return all_vectors

def pos_neg_test():
    positive_data_file = "./data/ham_5000.utf8"
    negative_data_file = './data/spam_5000.utf8'

    word2vec_path = 'out/trained_word2vec.model'
    sentences, labels = files_processing.load_pos_neg_files(positive_data_file, negative_data_file)
    # embedding_test(positive_data_file,negative_data_file)
    sentences, max_document_length = segment.padding_sentences(sentences, '', padding_sentence_length=190)
    # train_wordVectors(sentences,embedding_size=128,word2vec_path=word2vec_path) # 训练word2vec,并保存word2vec_path
    w2vModel=load_wordVectors(word2vec_path) #加载训练好的word2vec模型

    '''
    转换词向量提供有两种方法:
    [1]直接转换:根据字词直接映射到词向量:word2vector_lookup
    [2]间接转换:先将字词转为索引矩阵,再由索引矩阵映射到词向量:word2indexMat->indexMat2vector_lookup
    '''
    # [1]根据字词直接映射到词向量
    x1=word2vector_lookup(w2vModel, sentences)

    # [2]先将字词转为索引矩阵,再由索引矩阵映射到词向量
    indexMat_path = 'out/indexMat.npy'
    indexMat=word2indexMat(w2vModel, sentences, max_sentence_length=190) # 将字词转为索引矩阵
    save_indexMat(indexMat, indexMat_path)
    x2=indexMat2vector_lookup(w2vModel, indexMat) # 索引矩阵映射到词向量
    print("x.shape = {}".format(x2.shape))# shape=(10000, 190, 128)->(样本个数10000,每个样本的字词个数190,每个字词的向量长度128)

if __name__=='__main__':
    # THUCNews_path='/home/ubuntu/project/tfTest/THUCNews/test'
    # THUCNews_path='/home/ubuntu/project/tfTest/THUCNews/spam'
    THUCNews_path='/home/ubuntu/project/tfTest/THUCNews/THUCNews'
    # 读取所有文件列表
    files_list, label_list = files_processing.gen_files_labels(THUCNews_path)

    max_sentence_length=300
    word2vec_path="../../word2vec/models/THUCNews_word2Vec/THUCNews_word2Vec_128.model"

    # 获得标签集合,并保存在本地
    # labels_set=['星座','财经','教育']
    # labels_set = files_processing.get_labels_set(label_list)
    labels_file='../data/THUCNews_labels.txt'
    # files_processing.write_txt(labels_file, labels_set)

    # 将数据划分为train val数据集
    train_files, train_label, val_files, val_label= files_processing.split_train_val_list(files_list, label_list, facror=0.9, shuffle=True)

    # contents, labels=files_processing.read_files_labels(files_list,label_list)
    # word2vec_path = 'out/trained_word2vec.model'
    train_out_dir='../data/train_data'
    prefix='train_data'
    batchSize=20000
    labels_set=files_processing.read_txt(labels_file)
    # labels_set2 = files_processing.read_txt(labels_file)
    save_multi_file(files_list=train_files,
                    labels_list=train_label,
                    word2vec_path=word2vec_path,
                    out_dir=train_out_dir,
                    prefix=prefix,
                    batchSize=batchSize,
                    max_sentence_length=max_sentence_length,
                    labels_set=labels_set,
                    shuffle=True)
    print("*******************************************************")
    val_out_dir='../data/val_data'
    prefix='val_data'
    save_multi_file(files_list=val_files,
                    labels_list=val_label,
                    word2vec_path=word2vec_path,
                    out_dir=val_out_dir,
                    prefix=prefix,
                    batchSize=batchSize,
                    max_sentence_length=max_sentence_length,
                    labels_set=labels_set,
                    shuffle=True)

 


四、训练过程

    训练代码如下,注意,Github上不能上传大文件,所以你需要把上面提供的文件都下载下来,并放在对应的文件目录,就可以训练了。

    训练中需要读取训练数据,即*.npy文件,*.npy文件保存的是索引数据,因此需要转为CNN的embadding数据:这个过程由函数:indexMat2vector_lookup完成:train_batch_data = create_word2vec.indexMat2vector_lookup(w2vModel, train_batch_data)

#! /usr/bin/env python
# encoding: utf-8

import tensorflow as tf
import numpy as np
import os
from text_cnn import TextCNN
from utils import create_batch_data, create_word2vec, files_processing

def train(train_dir,val_dir,labels_file,word2vec_path,batch_size,max_steps,log_step,val_step,snapshot,out_dir):
    '''
    训练...
    :param train_dir: 训练数据目录
    :param val_dir:   val数据目录
    :param labels_file:  labels文件目录
    :param word2vec_path: 词向量模型文件
    :param batch_size: batch size
    :param max_steps:  最大迭代次数
    :param log_step:  log显示间隔
    :param val_step:  测试间隔
    :param snapshot:  保存模型间隔
    :param out_dir:   模型ckpt和summaries输出的目录
    :return:
    '''

    max_sentence_length = 300
    embedding_dim = 128
    filter_sizes = [3, 4, 5, 6]
    num_filters = 200  # Number of filters per filter size
    base_lr=0.001# 学习率
    dropout_keep_prob = 0.5
    l2_reg_lambda = 0.0  # "L2 regularization lambda (default: 0.0)


    allow_soft_placement = True  # 如果你指定的设备不存在,允许TF自动分配设备
    log_device_placement = False  # 是否打印设备分配日志


    print("Loading data...")
    w2vModel = create_word2vec.load_wordVectors(word2vec_path)

    labels_set = files_processing.read_txt(labels_file)
    labels_nums = len(labels_set)

    train_file_list = create_batch_data.get_file_list(file_dir=train_dir, postfix='*.npy')
    train_batch = create_batch_data.get_data_batch(train_file_list, labels_nums=labels_nums, batch_size=batch_size,
                                                   shuffle=False, one_hot=True)

    val_file_list = create_batch_data.get_file_list(file_dir=val_dir, postfix='*.npy')
    val_batch = create_batch_data.get_data_batch(val_file_list, labels_nums=labels_nums, batch_size=batch_size,
                                                 shuffle=False, one_hot=True)

    print("train data info *****************************")
    train_nums=create_word2vec.info_npy(train_file_list)
    print("val data   info *****************************")
    val_nums = create_word2vec.info_npy(val_file_list)
    print("labels_set info *****************************")
    files_processing.info_labels_set(labels_set)

    # Training
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(allow_soft_placement = allow_soft_placement,log_device_placement = log_device_placement)
        sess = tf.Session(config = session_conf)
        with sess.as_default():
            cnn = TextCNN(sequence_length = max_sentence_length,
                          num_classes = labels_nums,
                          embedding_size = embedding_dim,
                          filter_sizes = filter_sizes,
                          num_filters = num_filters,
                          l2_reg_lambda = l2_reg_lambda)

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(learning_rate=base_lr)
            # optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)

            # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)

            # Initialize all variables
            sess.run(tf.global_variables_initializer())

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run(
                    [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                if step % log_step==0:
                    print("training: step {}, loss {:g}, acc {:g}".format(step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: 1.0
                }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                if writer:
                    writer.add_summary(summaries, step)
                return loss, accuracy

            for i in range(max_steps):
                train_batch_data, train_batch_label = create_batch_data.get_next_batch(train_batch)
                train_batch_data = create_word2vec.indexMat2vector_lookup(w2vModel, train_batch_data)

                train_step(train_batch_data, train_batch_label)
                current_step = tf.train.global_step(sess, global_step)

                if current_step % val_step == 0:
                    val_losses = []
                    val_accs = []
                    # for k in range(int(val_nums/batch_size)):
                    for k in range(100):
                        val_batch_data, val_batch_label = create_batch_data.get_next_batch(val_batch)
                        val_batch_data = create_word2vec.indexMat2vector_lookup(w2vModel, val_batch_data)
                        val_loss, val_acc=dev_step(val_batch_data, val_batch_label, writer=dev_summary_writer)
                        val_losses.append(val_loss)
                        val_accs.append(val_acc)
                    mean_loss = np.array(val_losses, dtype=np.float32).mean()
                    mean_acc = np.array(val_accs, dtype=np.float32).mean()
                    print("--------Evaluation:step {}, loss {:g}, acc {:g}".format(current_step, mean_loss, mean_acc))

                if current_step % snapshot == 0:
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))


def main():
    # Data preprocess
    labels_file = 'data/THUCNews_labels.txt'
    word2vec_path = "../word2vec/models/THUCNews_word2Vec/THUCNews_word2Vec_128.model"

    max_steps = 100000  # 迭代次数
    batch_size = 128

    out_dir = "./models"  # 模型ckpt和summaries输出的目录
    train_dir = './data/train_data'
    val_dir = './data/val_data'

    train(train_dir=train_dir,
          val_dir=val_dir,
          labels_file=labels_file,
          word2vec_path=word2vec_path,
          batch_size=batch_size,
          max_steps=max_steps,
          log_step=50,
          val_step=500,
          snapshot=1000,
          out_dir=out_dir)


if __name__=="__main__":
    main()

五、测试过程

    这里提供两种测试方法:

(1):text_predict(files_list, labels_file, models_path, word2vec_path, batch_size)

    该方法,可以直接测试待分类的中文文本

(2):batch_predict(val_dir,labels_file,models_path,word2vec_path,batch_size)

    该方法,用于批量测试,val_dir目录保存的是测试数据的npy文件,这些文件都是上面用word2vec词向量处理THUCNews数据文件。

#! /usr/bin/env python
# encoding: utf-8

import tensorflow as tf
import numpy as np
import os
from text_cnn import TextCNN
from utils import create_batch_data, create_word2vec, files_processing
import math


def text_predict(files_list, labels_file, models_path, word2vec_path, batch_size):
    '''
    预测...
    :param val_dir:   val数据目录
    :param labels_file:  labels文件目录
    :param models_path:  模型文件
    :param word2vec_path: 词向量模型文件
    :param batch_size: batch size
    :return:
    '''
    max_sentence_length = 300
    embedding_dim = 128
    filter_sizes = [3, 4, 5, 6]
    num_filters = 200  # Number of filters per filter size
    l2_reg_lambda = 0.0  # "L2 regularization lambda (default: 0.0)
    print("Loading data...")
    w2vModel = create_word2vec.load_wordVectors(word2vec_path)

    labels_set = files_processing.read_txt(labels_file)
    labels_nums = len(labels_set)
    sample_num=len(files_list)

    labels_list=[-1]
    labels_list=labels_list*sample_num

    with tf.Graph().as_default():
        sess = tf.Session()
        with sess.as_default():
            cnn = TextCNN(sequence_length = max_sentence_length,
                          num_classes = labels_nums,
                          embedding_size = embedding_dim,
                          filter_sizes = filter_sizes,
                          num_filters = num_filters,
                          l2_reg_lambda = l2_reg_lambda)

            # Initialize all variables
            sess.run(tf.global_variables_initializer())
            saver = tf.train.Saver()
            saver.restore(sess, models_path)

            def pred_step(x_batch):
                """
                predictions model on a dev set
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.dropout_keep_prob: 1.0
                }
                pred = sess.run([cnn.predictions],feed_dict)
                return pred

            batchNum = int(math.ceil(1.0 * sample_num / batch_size))
            for i in range(batchNum):
                start = i * batch_size
                end = min((i + 1) * batch_size, sample_num)
                batch_files = files_list[start:end]

                # 读取文件内容,字词分割
                batch_content= files_processing.read_files_list_to_segment(batch_files,
                                                                max_sentence_length,
                                                                padding_token='')
                # [1]将字词转为索引矩阵,再映射为词向量
                batch_indexMat = create_word2vec.word2indexMat(w2vModel, batch_content, max_sentence_length)
                val_batch_data = create_word2vec.indexMat2vector_lookup(w2vModel, batch_indexMat)

                # [2]直接将字词映射为词向量
                # val_batch_data = create_word2vec.word2vector_lookup(w2vModel,batch_content)

                pred=pred_step(val_batch_data)
                 
                pred=pred[0].tolist()
                pred=files_processing.labels_decoding(pred,labels_set)
                for k,file in enumerate(batch_files):
                    print("{}, pred:{}".format(file,pred[k]))

def batch_predict(val_dir,labels_file,models_path,word2vec_path,batch_size):
    '''
    预测...
    :param val_dir:   val数据目录
    :param labels_file:  labels文件目录
    :param models_path:  模型文件
    :param word2vec_path: 词向量模型文件
    :param batch_size: batch size
    :return:
    '''
    max_sentence_length = 300
    embedding_dim = 128
    filter_sizes = [3, 4, 5, 6]
    num_filters = 200  # Number of filters per filter size
    l2_reg_lambda = 0.0  # "L2 regularization lambda (default: 0.0)
    print("Loading data...")
    w2vModel = create_word2vec.load_wordVectors(word2vec_path)

    labels_set = files_processing.read_txt(labels_file)
    labels_nums = len(labels_set)


    val_file_list = create_batch_data.get_file_list(file_dir=val_dir, postfix='*.npy')
    val_batch = create_batch_data.get_data_batch(val_file_list, labels_nums=labels_nums, batch_size=batch_size,
                                                 shuffle=False, one_hot=True)

    print("val data   info *****************************")
    val_nums = create_word2vec.info_npy(val_file_list)
    print("labels_set info *****************************")
    files_processing.info_labels_set(labels_set)
    # Training
    with tf.Graph().as_default():
        sess = tf.Session()
        with sess.as_default():
            cnn = TextCNN(sequence_length = max_sentence_length,
                          num_classes = labels_nums,
                          embedding_size = embedding_dim,
                          filter_sizes = filter_sizes,
                          num_filters = num_filters,
                          l2_reg_lambda = l2_reg_lambda)

            # Initialize all variables
            sess.run(tf.global_variables_initializer())
            saver = tf.train.Saver()
            saver.restore(sess, models_path)

            def dev_step(x_batch, y_batch):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: 1.0
                }
                loss, accuracy = sess.run(
                    [cnn.loss, cnn.accuracy],
                    feed_dict)
                return loss, accuracy

            val_losses = []
            val_accs = []
            for k in range(int(val_nums/batch_size)):
            # for k in range(int(10)):
                val_batch_data, val_batch_label = create_batch_data.get_next_batch(val_batch)
                val_batch_data = create_word2vec.indexMat2vector_lookup(w2vModel, val_batch_data)
                val_loss, val_acc=dev_step(val_batch_data, val_batch_label)
                val_losses.append(val_loss)
                val_accs.append(val_acc)
                print("--------Evaluation:step {}, loss {:g}, acc {:g}".format(k, val_loss, val_acc))

            mean_loss = np.array(val_losses, dtype=np.float32).mean()
            mean_acc = np.array(val_accs, dtype=np.float32).mean()
            print("--------Evaluation:step {}, mean loss {:g}, mean acc {:g}".format(k, mean_loss, mean_acc))


def main():
    # Data preprocess
    labels_file = 'data/THUCNews_labels.txt'
    # word2vec_path = 'word2vec/THUCNews_word2vec300.model'
    word2vec_path = "../word2vec/models/THUCNews_word2Vec/THUCNews_word2Vec_128.model"
    models_path='models/checkpoints/model-30000'
    batch_size = 128
    val_dir = './data/val_data'

    batch_predict(val_dir=val_dir,
          labels_file=labels_file,
          models_path=models_path,
          word2vec_path=word2vec_path,
          batch_size=batch_size)

    test_path='/home/ubuntu/project/tfTest/THUCNews/my_test'
    files_list = files_processing.get_files_list(test_path,postfix='*.txt')
    text_predict(files_list, labels_file, models_path, word2vec_path, batch_size)

if __name__=="__main__":
    main()

 

你可能感兴趣的:(TensoFlow,NLP,深度学习)