gensim.models.Word2Vec参数

Word2Vec参数说明:

  • sentences (iterable of iterables, optional) – 供训练的句子,可以使用简单的列表,但是对于大语料库,建议直接从磁盘/网络流迭代传输句子。参阅word2vec模块中的BrownCorpus,Text8Corpus或LineSentence。
  • corpus_file (str, optional) – LineSentence格式的语料库文件路径。
  • size (int, optional) – word向量的维度。
  • window (int, optional) – 一个句子中当前单词和被预测单词的最大距离。
  • min_count (int, optional) – 忽略词频小于此值的单词。
  • workers (int, optional) – 训练模型时使用的线程数。
  • sg ({0, 1}, optional) – 模型的训练算法: 1: skip-gram; 0: CBOW.
  • hs ({0, 1}, optional) – 1: 采用hierarchical softmax训练模型; 0: 使用负采样。
  • negative (int, optional) – > 0: 使用负采样,设置多个负采样(通常在5-20之间)。
  • ns_exponent (float, optional) – 负采样分布指数。1.0样本值与频率成正比,0.0样本所有单词均等,负值更多地采样低频词。
  • cbow_mean ({0, 1}, optional) – 0: 使用上下文单词向量的总和; 1: 使用均值,适用于使用CBOW。
  • alpha (float, optional) – 初始学习率。
  • min_alpha (float, optional) – 随着训练的进行,学习率线性下降到min_alpha。
  • seed (int, optional) – 随机数发生器种子。
  • max_vocab_size (int, optional) – 词汇构建期间RAM的限制; 如果有更多的独特单词,则修剪不常见的单词。 每1000万个类型的字需要大约1GB的RAM。
  • max_final_vocab (int, optional) – 自动选择匹配的min_count将词汇限制为目标词汇大小。
  • sample (float, optional) – 高频词随机下采样的配置阈值,范围是(0,1e-5)。
  • hashfxn (function, optional) – 哈希函数用于随机初始化权重,以提高训练的可重复性。
  • iter (int, optional) – 迭代次数。
  • trim_rule (function, optional) – 词汇修剪规则,指定某些词语是否应保留在词汇表中,修剪掉或使用默认值处理。
  • sorted_vocab ({0, 1}, optional) – 如果为1,则在分配单词索引前按降序对词汇表进行排序。
  • batch_words (int, optional) – 每一个batch传递给线程单词的数量。
  • compute_loss (bool, optional) – 如果为True,则计算并存储可使用get_latest_training_loss()检索的损失值。
  • callbacks (iterable of CallbackAny2Vec, optional) – 在训练中特定阶段执行回调序列。
     

你可能感兴趣的:(python)