- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- onnx基础
whyte王
python
初次编辑时间:2024/2/7;最后编辑时间:2024/2/12定义:ONNX(OpenNeuralNetworkExchange)是一种开放式的文件格式,用于存储训练好的机器学习模型。它使得不同的人工智能框架(如PyTorch、MXNet、Tensorflow)可以采用相同格式存储模型数据并交互。Basic当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息
- MxNet源码解析(1) KVStore,pslite源码解析
Junr_0926
1.前言从毕业开始工作已经两个多月,这期间相当一部分的时间都用在了对MxNet的学习上,而在MxNet的众多部分中,又是pslite这一部分接触最多。因此,今天将我一直以来的学习过程中的心得和收获总结在这里,也为以后对MxNet的继续学习做一个铺垫2.MxNet构成MxNet作为一个深度学习框架,它最大的特点应该是分布式训练的支持了。从初次接触MxNet到现在的两个多月里,我认为MxNet主要有以
- 人脸识别数据集整理
想努力的人
人脸识别深度学习人工智能计算机视觉
转自:人脸识别数据集整理-陈晓涛-博客园insightface提供整理了mtcnn裁剪112x112,mxnet二进制方式保存的数据集https://github.com/deepinsight/insightface/wiki/Dataset-Zoo人脸识别训练数据集:CASIA-Webface(10Kids/0.5Mimages)CASIAWebFaceDataset是一个大规模人脸数据集,主
- 深度学习-随机梯度下降
白云如幻
PyTorch深度学习机器学习算法人工智能
在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,将继续更详细地说明随机梯度下降(stochasticgradientdescent)。%matplotlibinlineimportmathfrommxnetimportnp,npxfromd2limportmxnetasd2lnpx.set_np()随机梯度更新在深度学习中,目标函数通常是训练数据集中每个样本的损失函数的平均
- 动手学深度学习(二)——正则化(从零开始)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:本文为李沐大神的《动手学深度学习》的课程笔记!高维线性回归使用线性函数$y=0.05+\sum_{i=1}^p0.01x_i+\text{noise}$生成数据样本,噪音服从均值0和标准差为0.01的正态分布。#导入mxnetimportrandomimportmxnetasmx#设置随机种子random.seed(2)mx.ran
- 2023-2024深度学习框架之争——选pytorch还是tensorflow?
NCHU-Net
人工智能人工智能深度学习pytorchtensorflow
深度学习是人工智能领域的一个重要分支,它利用多层神经网络来模拟人类的学习和推理能力,解决各种复杂的问题,如图像识别、自然语言处理、语音识别、推荐系统等。深度学习框架是一种软件工具,它提供了构建、训练、测试和部署深度学习模型的便利,使得开发者和研究者可以更高效地进行深度学习的开发和应用。目前,市场上有许多不同的深度学习框架,如PyTorch、TensorFlow、Keras、MXNet、Caffe2
- mxnet版本与numpy,requests等都不兼容问题
Bian~
numpymxnetpython
简介跟着李沐学AI时遇到的mxnet环境问题。问题使用pipinstallmxnet时会重新安装相匹配的numpy和requests,而这新安装的这两个版本不满足d2l所需的版本。然后报错:ERROR:pip'sdependencyresolverdoesnotcurrentlytakeintoaccountallthepackagesthatareinstalled.Thisbehaviouri
- 初学AI-动手安装mxnet
小白天天向上
mxnet人工智能深度学习
最近看到网络上介绍的《动手学深度学习》,感觉是一本理论结合实际的好书。参考链接如下:《动手学深度学习》—动手学深度学习2.0.0documentation心痒之下开始动手安装,没想到花费自己两天实际搞明白如何安装。以下记录自己的心路历程,哈哈。书上介绍的第一步安装Minicoda,其实也可以安装Anacoda,不影响后面的MXNET安装。书上没有介绍MXNET的运行环境,实际上MXNET只能运行在
- Mxnet导出onnx模型
上单之光
模型部署mxnet人工智能深度学习
Mxnet导出onnx模型requirementsmxnet==1.9.1python3.8+onnxsim导出模型importosimportmxnetasmximportnumpyasnpimportonnxfromonnximportcheckerfrommxnet.onnximportexport_modelfrommxnet.gluon.model_zooimportvisionfrom
- mxnet和numpy版本对应
Edison/
pythonmxnet
关于安装mxnet与numpy版本冲突解决方法下载anaconda32019.7python3.7版本mxnet1.6.0版本numpy1.16.x成功运行
- 安装mxnet详细版
江江酱₍ᐢ..ᐢ₎♡
mxnet人工智能深度学习pythonpipcondaipython
一、mxnet简介MXNet是一个开源的深度学习框架,由亚马逊公司发起并维护。它支持多种编程语言,包括Python、C++、R、Scala等,可以在CPU、GPU和分布式环境下运行。MXNet提供了丰富的神经网络层和优化算法,可以用于各种深度学习任务,如图像分类、目标检测、语音识别等。同时,MXNet还具有高效、灵活、易用等特点,受到了广泛的关注和应用。二、安装过程及遇到的困难步骤一:直接Win+
- 【避免踩坑+报错】Python mxnet包成功安装指南
_普
mxnet人工智能深度学习python经验分享
一.确保已经安装Anaconda二.打开root环境控制台,执行【mxnet】包相关安装指令。1.创建python3.7.0环境condacreate-nnamepython=3.7.0【测试mxnet在python3.7.0x以上版本使用大概率会报错,这里使用低版本python环境】ps:如果在这一步创建环境报错可以考虑卸载【Anaconda】重装2.激活环境condaactivatename三
- [动手学深度学习-PyTorch版]-8.4计算性能-多GPU计算
蒸饺与白茶
8.4多GPU计算注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考PyTorch官方文档。本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个
- 模型优化论文笔记6----MobileNets采用深度可分离卷积在权衡精度的同时减小模型尺寸和时延
JaJaJaJaaaa
模型优化卷积神经网络深度学习
《MobileNets:EfficientConvolutionalNeuralNetworksforMobileVisionApplications》论文地址:https://arxiv.org/abs/1704.04861MXNet框架代码:https://github.com/miraclewkf/mobilenet-MXNet1.主要思想介绍了两种简单的全局超参数用以平衡时延和准确率,构建
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- ART-Adversarial Robustness Toolbox检测AI模型及对抗攻击的工具
Rnan-prince
网络安全人工智能python
一、工具简介AdversarialRobustnessToolbox是IBM研究团队开源的用于检测模型及对抗攻击的工具箱,为开发人员加强AI模型被误导的防御性,让AI系统变得更加安全,ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频
- JAVA 程序员的宝藏 AI 工具箱 – Deep Java Library (DJL)
Lannnking
转载自知乎前言这几年深度学习的爆发带来了一个未曾预料到的结果,Python这个曾经小众的语言突然之间变得炙手可热。究其原因,在Python的生态中我们可以容易的找到许多的资源。例如,NumPy用于数据计算、Matplotlib用于数据可视化以及MXNet、PyTorch、TensorFlow等一众深度学习框架。相比之下,尽管Java语言仍是最流行的语言之一,拥有为数众多的开发者,尤其在企业市场拥有
- MxNet源码解析(2) symbol
Junr_0926
1.前言我们在训练之前,先建立好一个图,然后我们可以在这个图上做我们想做的优化,这种形式称为SymbolicPrograms。相对应的是ImperativePrograms,也就是每一句代码都对应着程序的执行,在这种情况下,我们可以写类似于下面的代码:a=2b=a+1d=np.zeros(10)foriinrange(d):d+=np.zeros(10)这在symbolic的方式下是做不到的,因为
- DMLC深度机器学习框架MXNet的编译安装
AI小白龙*
机器学习mxnet人工智能计算机视觉YOLO深度学习tensorflow
这篇文章将介绍MXNet的编译安装。MXNet的编译安装分为两步:首先,从C++源码编译共享库(libmxnet.soforlinux,libmxnet.dylibforosx,libmxnet.dllforwindows)。接着,安装语言包。1.构建共享库依赖目标是构建共享库文件。最小构建需求:最新的支持C++11的C++编译器,比如g++>=4.8,clang一份BLAS库,比如libblas
- AI 训练框架:Pytorch TensorFLow MXNet Caffe ONNX PaddlePaddle
linzhiji
人工智能pytorchtensorflow
https://medium.com/jit-team/bridge-tools-for-machine-learning-frameworks-3eb68d6c6558
- 深度学习之TensorFlow——基本使用
人工智能小豪
neo4jtensorflow人工智能深度学习
一、目前主流的深度学习框架Caffe,TensorFlow,MXNet,Torch,Theano比较库名称开发语言速度灵活性文档适合模型平台上手难易Caffec++/cuda快一般全面CNN所有系统中等TensorFlowc++/cuda/Python中等好中等CNN/RNNLinux,OSX难MXNetc++/cuda快好全面CNN所有系统中等Torchc/lua/cuda快好全面CNN/RNN
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- 深度学习框架 の 动态图 vs 静态图
CW不要无聊的风格
Date:2020/08/03Author:CWForeword:各位炼丹者应该都会有自己常用的一种或几种深度学习框架,如MxNet、Caffe、Tensorflow、Pytorch、PaddlePaddle(百度),甚至是国产新兴框架MegEngine(旷视)、MindSpore(华为)等,在涉及介绍这些框架的时候,都会提及动态图和静态图这样的概念,那么它们究竟是什么意思呢?在框架中又是如何体现
- 深度学习_Softmax简洁实现(Gluon实现)
VictorHong
Softmax多分类简洁实现(Gluon实现)导入必要的包importd2lzhasd2lfrommxnetimportndfrommxnet.gluonimportdataasgdata,lossasgloss,nnfrommxnetimportgluon,init获取和读取数据batch_size=256train_iter,test_iter=d2l.load_data_fashion_mn
- nvidia-docker gpu环境搭建
chaos_chen
dockergpu环境搭建前言搭建GPU的开发环境需要安装nvidia的驱动、cuda、cudnn等,还要安装tensorflow、pytorch、mxnet等框架,并且驱动版本和框架版本需要相统一,如tensorflow1.9的版本需要对用cuda9.0,如果要升级tensorflow,cuda也要做相应的升级。每次在新机器上部署环境都费时费力,因此急需一套docker来快速移植。安装nvidi
- Win10系统下 Tensorrt C++部署yolov5
o氧气o
YOLO人工智能深度学习
1.TensorRt介绍TensorRt是一个有助于在NVIDIA图形处理单元(GPU)上高性能推理c++库。它旨在与TesnsorFlow、Caffe、Pytorch以及MXNet等训练框架以互补的方式进行工作,专门致力于在GPU上快速有效地进行网络推理。一般的深度学习项目,训练时为了加快速度,会使用多GPU并行训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如NVI
- 深度学习工具那么多,究竟哪款最适合你?| 线下沙龙 × 报名
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- 线下沙龙 × 报名 | 深度学习工具那么多,究竟哪款最适合你?
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- [PyTorch][chapter 7][李宏毅深度学习][深度学习简介]
明朝百晓生
人工智能
前言:深度学习常用的开发平台TensorFlowtorchtheanocaffeDSSTNEmxnetlibdnnCNTK目录:1:深度学习发展历史2:DeepLearning工程简介3:DNN简介一发展历史二DeepLearning工程简介深度学习三大步:定义映射函数(神经网络)定义损失函数通过梯度更新,选择最好的映射函数2.1NeuralNetwork给定了一个函数,可以设置不同的参数,所以对
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>