- 【漫话机器学习系列】276.梯度悬崖(Gradient Cliff)
IT古董
漫话机器学习系列专辑机器学习人工智能
【深度学习】理解梯度悬崖(GradientCliff):从一个图搞懂优化陷阱在深度学习的优化过程中,我们常常会遇到“训练不稳定”“loss波动异常”甚至“训练失败”的情况。这些问题可能来源于多方面:学习率设置不当、模型结构不合理、梯度爆炸/消失等等。而其中一个不容忽视但常被初学者忽略的问题就是——梯度悬崖(GradientCliff)。本文将通过一张图,深入浅出地讲解什么是梯度悬崖,它会带来什么问
- 机器学习系列-----主成分分析(PCA)
DK22151
机器学习机器学习人工智能算法
一、什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的线性降维技术,它通过正交变换将数据从高维空间映射到低维空间,同时尽量保留数据的方差。PCA的目的是将数据中最重要的特征提取出来,去掉冗余的信息,从而减少数据的维度,并且使得数据的解释更加直观。PCA不仅是数据预处理的一种手段,也在许多机器学习和数据分析中得到广泛应用。比如,图像
- 【漫话机器学习系列】238.训练误差与测试误差(Training Error And Test Error)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
训练误差与测试误差详解|MachineLearning基础概念在机器学习的学习和实践过程中,我们经常会遇到两个重要的概念:训练误差(TrainingError)和测试误差(TestError)。理解这两个误差的区别和联系,是掌握模型性能评估、调优的基础。本文将从定义、意义、差异和常见误区等方面,系统地讲解训练误差与测试误差。一、什么是训练误差(TrainingError)训练误差是指:模型在训练数
- 机器学习系列----介绍前馈神经网络和卷积神经网络 (CNN)
DK22151
机器学习机器学习神经网络cnn
前言在深度学习领域,神经网络是一种模拟人脑神经元结构和功能的数学模型。它通过大量的层次结构和参数调整来实现模式识别、分类、回归等任务。常见的神经网络结构有前馈神经网络(FeedforwardNeuralNetworks,简称FNN)和卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)。这两种网络模型在图像处理、语音识别等多个领域取得了巨大的成功。本篇博客将详细介绍前
- 【漫话机器学习系列】181.没有免费的午餐定理(NFL)
IT古董
漫话机器学习系列专辑机器学习人工智能
没有免费的午餐定理(NFL)详解1.引言在机器学习和人工智能的研究中,人们经常试图寻找“最优”的算法,以便在各种任务中表现最佳。然而,“没有免费的午餐定理”(NoFreeLunchTheorem,NFL)告诉我们,不存在一种在所有问题上都表现最优的学习算法。这个定理对机器学习、优化和人工智能领域的研究具有重要的理论意义。本文将详细介绍“没有免费的午餐定理”,包括其概念、数学推导、直观理解以及对实际
- 【漫话机器学习系列】137.随机搜索(Randomized Search)
IT古董
漫话机器学习系列专辑机器学习人工智能
随机搜索(RandomizedSearch)详解在机器学习和深度学习的模型训练过程中,超参数调优(HyperparameterTuning)是至关重要的一环。随机搜索(RandomizedSearch)是一种高效的超参数优化方法,它通过在候选超参数的数值分布(如正态分布、均匀分布等)中随机选择超参数组合,从而找到最优的超参数配置。1.超参数调优的必要性超参数是模型在训练之前需要人为设定的参数,例如
- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- 【漫话机器学习系列】041.信息丢失(dropout)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
信息丢失(Dropout)Dropout是一种广泛应用于神经网络训练中的正则化技术,旨在减少过拟合(overfitting),提高模型的泛化能力。虽然"信息丢失"(dropout)这个术语在某些情况下可能引起误解,指的并非是数据的丢失,而是训练过程中故意“丢弃”神经网络中的部分神经元。这种做法可以避免模型过于依赖于某些特定的神经元,从而提高模型在新数据上的表现。Dropout的工作原理在神经网络的
- 【漫话机器学习系列】079.超参数调优(Hyperparameter Tuning)
IT古董
漫话机器学习系列专辑机器学习深度学习人工智能
超参数调优(HyperparameterTuning)是机器学习中优化模型性能的重要步骤之一。超参数是模型在训练之前设定的参数,而不是通过训练数据学习到的参数。正确地选择超参数可以显著提高模型的预测能力,反之,错误的超参数选择可能会导致过拟合、欠拟合或训练过程缓慢。1.超参数的定义超参数是控制学习过程的外部参数,不同于模型参数(例如权重和偏置),超参数不通过训练过程自动优化。常见的超参数包括:学习
- 【漫话机器学习系列】054.极值(Extrema)
IT古董
漫话机器学习系列专辑机器学习人工智能
极值(Extrema)定义极值是数学分析和优化问题中的一个核心概念,指函数在某个定义域内取得的最大值或最小值。根据极值的性质,可以将其分为两类:局部极值(LocalExtrema):函数在某点附近的最大值或最小值。全局极值(GlobalExtrema):函数在整个定义域内的最大值或最小值。分类局部极大值(LocalMaximum):若在点x=a附近存在某邻域,使得对任意x在该邻域内,满足f(x)≤
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 机器学习系列(8)——提升树与GBDT算法
陌简宁
机器学习
本文介绍提升树模型与GBDT算法。0x01、提升树模型提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法,以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:其中,表示决策树,为决策树的
- 机器学习系列——(十三)多项式回归
飞影铠甲
机器学习机器学习回归人工智能
引言在机器学习领域,线性回归是一种常见且简单的模型。然而,在某些情况下,变量之间的关系并不是线性的,这时候我们就需要使用多项式回归来建模非线性关系。多项式回归通过引入高次项来扩展线性回归模型,从而更好地拟合数据。本文将详细介绍多项式回归的原理、应用场景和实现步骤,并通过一个实际案例演示如何使用多项式回归进行预测。一、原理多项式回归是一种形式上为多项式的函数与自变量之间的线性回归关系。其基本原理是通
- 机器学习系列——(二十二)结语
飞影铠甲
机器学习机器学习人工智能
随着我们的机器学习系列的探索画上句号,我们不禁感慨于这一领域的广阔和深邃。从最初的基础概念到复杂的算法,从理论的探讨到实际应用的示例,我们一起经历了一段非凡的旅程。机器学习不仅是当前技术创新的核心驱动力之一,也是塑造未来的关键因素。在这个结语中,让我们回顾这段旅程的亮点,并展望机器学习将如何继续改变我们的世界。回顾学习之旅我们的系列文章涵盖了机器学习的各个方面,从监督学习到无监督学习,从简单的线性
- 机器学习系列——(二十一)神经网络
飞影铠甲
机器学习机器学习神经网络人工智能
引言在当今数字化时代,机器学习技术正日益成为各行各业的核心。而在机器学习领域中,神经网络是一种备受瞩目的模型,因其出色的性能和广泛的应用而备受关注。本文将深入介绍神经网络,探讨其原理、结构以及应用。一、简介神经网络是一种受到人类神经系统启发而设计的计算模型。它由大量的人工神经元组成,这些神经元之间通过连接进行信息传递和处理。神经网络的主要目标是从数据中学习规律,并能够进行预测、分类、识别等任务。二
- 机器学习系列——(二十)密度聚类
飞影铠甲
机器学习机器学习聚类支持向量机
引言在机器学习的无监督学习领域,聚类算法是一种关键的技术,用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法(如K-Means)不同,密度聚类关注于数据分布的密度,旨在识别被低密度区域分隔的高密度区域。这种方法在处理具有复杂形状和大小的聚类时表现出色,尤其擅长于识别噪声和异常值。本文将详细介绍密度聚类的概念、主要算法及其应用。一、概述密度聚类基于一个核心思想:聚类可以通过连接密度相似的点
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 机器学习系列——(十八)K-means聚类
飞影铠甲
机器学习机器学习kmeans聚类
引言在众多机器学习技术中,K-means聚类以其简洁高效著称,成为了数据分析师和算法工程师手中的利器。无论是在市场细分、社交网络分析,还是图像处理等领域,K-means都扮演着至关重要的角色。本文旨在深入解析K-means聚类的原理、实现方式、优缺点及其应用,以期为读者提供全面而深入的理解。一、K-means聚类简介K-means是一种基于划分的聚类算法,它的目标是将n个对象根据属性分为k个簇,使
- 机器学习系列——(十五)随机森林回归
飞影铠甲
机器学习机器学习随机森林回归人工智能
引言在机器学习的众多算法中,随机森林以其出色的准确率、对高维数据的处理能力以及对训练数据集的异常值的鲁棒性而广受欢迎。它是一种集成学习方法,通过构建多个决策树来进行预测和分类。本文将重点介绍随机森林在回归问题中的应用,即随机森林回归(RandomForestRegression)。一、概念随机森林回归是基于决策树的集成学习技术。在这个模型中,我们构建多个决策树,并将它们的预测结果合并来得到最终的回
- 机器学习系列——(十六)回归模型的评估
飞影铠甲
机器学习机器学习回归人工智能
引言在机器学习领域,回归模型是一种预测连续数值输出的重要工具。无论是预测房价、股票价格还是天气温度,回归模型都扮演着不可或缺的角色。然而,构建模型只是第一步,评估模型的性能是确保模型准确性和泛化能力的关键环节。本文将详细介绍几种常用的回归模型评估方法。一、均方误差(MeanSquaredError,MSE)均方误差是最常用的回归评估指标之一,它计算了预测值与真实值之间差异的平方的平均值。公式如下:
- 机器学习系列——(十四)正则化回归
飞影铠甲
机器学习机器学习回归人工智能
引言在机器学习领域,正则化回归是一种常用的技术,旨在解决过拟合问题,提高模型的泛化能力。本文将简单探讨正则化回归的概念、类型和应用,帮助读者更好地理解和运用这一重要技术。一、概念正则化回归是一种通过引入额外信息(约束或惩罚项)来调整模型复杂度的方法,从而防止过拟合,提高模型的泛化能力。简单来说,正则化就是在模型训练过程中加入一个正则项,以限制模型参数的大小。那么,为什么需要正则化?在机器学习中,模
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include