本文主要是利用Keras框架搭建BiLSTM+CRF的序列标注模型,完成中文的命名实体识别任务。这里使用的数据集是提前处理过的,已经转成命名实体识别需要的“BIO”标注格式。
详细代码和数据:https://github.com/huanghao128/zh-nlp-demo
本文使用的数据是已经预处理过的,所以直接加载数据就好了,首先我们要加载字符词典文件,还有BIO标记类别的索引化。其中BIO标记中B-PER和I-PER表示人名,B-LOC和I-LOC表示地名,B-ORG和I-ORG表示机构名。
char_vocab_path = "./data/char_vocabs.txt" # 字典文件
train_data_path = "./data/train_data" # 训练数据
test_data_path = "./data/test_data" # 测试数据
special_words = ['' , '' ] # 特殊词表示
# "BIO"标记的标签
label2idx = {"O": 0,
"B-PER": 1, "I-PER": 2,
"B-LOC": 3, "I-LOC": 4,
"B-ORG": 5, "I-ORG": 6
}
# 索引和BIO标签对应
idx2label = {idx: label for label, idx in label2idx.items()}
# 读取字符词典文件
with open(char_vocab_path, "r", encoding="utf8") as fo:
char_vocabs = [line.strip() for line in fo]
char_vocabs = special_words + char_vocabs
# 字符和索引编号对应
idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
vocab2idx = {char: idx for idx, char in idx2vocab.items()}
然后加载训练和测试集,并把原始数据和BIO标记转成索引和类别编号。
# 读取数据集语料
def read_corpus(corpus_path, vocab2idx, label2idx):
datas, labels = [], []
with open(corpus_path, encoding='utf-8') as fr:
lines = fr.readlines()
sent_, tag_ = [], []
for line in lines:
if line != '\n':
[char, label] = line.strip().split()
sent_.append(char)
tag_.append(label)
else:
sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx['' ] for char in sent_]
tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]
datas.append(sent_ids)
labels.append(tag_ids)
sent_, tag_ = [], []
return datas, labels
# 加载训练集
train_datas, train_labels = read_corpus(train_data_path, vocab2idx, label2idx)
# 加载测试集
test_datas, test_labels = read_corpus(test_data_path, vocab2idx, label2idx)
数据的填充,以及类别的one-hot编码。
import keras
from keras.preprocessing import sequence
MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)
# padding data
train_datas = sequence.pad_sequences(train_datas, maxlen=MAX_LEN)
train_labels = sequence.pad_sequences(train_labels, maxlen=MAX_LEN)
test_datas = sequence.pad_sequences(test_datas, maxlen=MAX_LEN)
test_labels = sequence.pad_sequences(test_labels, maxlen=MAX_LEN)
print('x_train shape:', train_datas.shape)
print('x_test shape:', test_datas.shape)
# encoder one-hot
train_labels = keras.utils.to_categorical(train_labels, CLASS_NUMS)
test_labels = keras.utils.to_categorical(test_labels, CLASS_NUMS)
print('trainlabels shape:', train_labels.shape)
print('testlabels shape:', test_labels.shape)
模型构建主要使用keras自带的基础模型组装,首先是双向LSTM模型,然后输出接CRF模型,输出对每个时刻的分类。
## BiLSTM+CRF模型构建
from keras.models import Sequential
from keras.models import Model
from keras.layers import Masking, Embedding, Bidirectional, LSTM, Dense, Input, TimeDistributed, Activation
from keras_contrib.layers import CRF
from keras_contrib.losses import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
from keras import backend as K
EPOCHS = 20
BATCH_SIZE = 64
EMBED_DIM = 128
HIDDEN_SIZE = 64
MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)
# Input输入层
inputs = Input(shape=(MAX_LEN,), dtype='int32')
# masking屏蔽层
x = Masking(mask_value=0)(inputs)
# Embedding层
x = Embedding(VOCAB_SIZE, EMBED_DIM, mask_zero=True)(x)
# Bi-LSTM层
x = Bidirectional(LSTM(HIDDEN_SIZE, return_sequences=True))(x)
# Bi-LSTM展开输出
x = TimeDistributed(Dense(CLASS_NUMS))(x)
# CRF模型层
outputs = CRF(CLASS_NUMS)(x)
model = Model(inputs=inputs, outputs=outputs)
model.summary()
model.compile(loss=crf_loss, optimizer='adam', metrics=[crf_viterbi_accuracy])
# 训练模型
model.fit(train_datas, train_labels, epochs=EPOCHS, verbose=1, validation_split=0.1)
score = model.evaluate(test_datas, test_labels, batch_size=BATCH_SIZE)
print(model.metrics_names)
print(score)
# 保存模型
model.save("./model/ch_ner_model.h5")
结果预测是我们训练好模型后,重新加载模型,输入新的要预测文本,然后识别出文本中的命名实体。这里首先要加载字符词典,然后加载模型,之后对输入文本预处理成字符序列,然后模型预测每个时刻的输出类别,最后把类别转成BIO标记,BIO标记组合成正确的命名实体。
char_vocab_path = "./data/char_vocabs.txt" # 字典文件
model_path = "./model/ch_ner_model.h5" # 模型文件
ner_labels = {"O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6}
special_words = ['' , '' ]
MAX_LEN = 100
with open(char_vocab_path, "r", encoding="utf8") as fo:
char_vocabs = [line.strip() for line in fo]
char_vocabs = special_words + char_vocabs
idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
vocab2idx = {char: idx for idx, char in idx2vocab.items()}
idx2label = {idx: label for label, idx in ner_labels.items()}
sentence = "中华人民共和国国务院总理周恩来在外交部长陈毅的陪同下,连续访问了埃塞俄比亚等非洲10国以及阿尔巴尼亚。"
sent2id = [vocab2idx[word] if word in vocab2idx else vocab2idx['' ] for word in sentence]
sent2input = np.array([sent2id[:MAX_LEN] + [0] * (MAX_LEN-len(sent2id))])
model = load_model(model_path, custom_objects={'CRF': CRF}, compile=False)
y_pred = model.predict(sent2input)
y_label = np.argmax(y_pred, axis=2)
y_label = y_label.reshape(1, -1)[0]
y_ner = [index2label[i] for i in y_label][-MAX_LEN:]
print(idx2label)
print(sent_chars)
print(sent2id)
print(y_ner)
从BIO标记的结果,解析成具体的人名、地名、机构名还需要一些操作,具体的解析过程如下:
# 对预测结果进行命名实体解析和提取
def get_valid_nertag(input_data, result_tags):
result_words = []
start, end =0, 1 # 实体开始结束位置标识
tag_label = "O" # 实体类型标识
for i, tag in enumerate(result_tags):
if tag.startswith("B"):
if tag_label != "O": # 当前实体tag之前有其他实体
result_words.append((input_data[start: end], tag_label)) # 获取实体
tag_label = tag.split("-")[1] # 获取当前实体类型
start, end = i, i+1 # 开始和结束位置变更
elif tag.startswith("I"):
temp_label = tag.split("-")[1]
if temp_label == tag_label: # 当前实体tag是之前实体的一部分
end += 1 # 结束位置end扩展
elif tag == "O":
if tag_label != "O": # 当前位置非实体 但是之前有实体
result_words.append((input_data[start: end], tag_label)) # 获取实体
tag_label = "O" # 实体类型置"O"
start, end = i, i+1 # 开始和结束位置变更
if tag_label != "O": # 最后结尾还有实体
result_words.append((input_data[start: end], tag_label)) # 获取结尾的实体
return result_words
result_words = get_valid_nertag(sent_chars, y_ner)
for (word, tag) in result_words:
print("".join(word), tag)
贴出来的代码应该不完善,详细情况和数据集的下载可以关注github。