- Shell Script 编程笔记
huangpg丶
SupportingTechnology
考虑下面两个场景:场景一:我们在训练深度网络模型过程中保存了10个不同epoch模型。我们希望通过测试集验证每个模型的性能。每次对模型进行测试集验证需要30分钟,对于原始的操作方式,每次验证需要在终端手动输入一条指令,等待30分钟后程序运行结束,然后复制窗口输出的模型性能信息手动保存。再输入指令测试下一个模型,再进行等待......场景二:现在有一个任务需要进行视频内的行人检测和行人重识别,如果我
- 基于CLIP视觉语言大模型的行人重识别方法的简单框架设计
max500600
开发语言算法开发工具视觉语言clip
以下是一个基于CLIP视觉语言大模型的行人重识别方法的简单框架设计,用于数据集测试。我们将使用torch和clip库,假设数据集是一个包含行人图像的文件夹结构,每个子文件夹代表一个行人身份。步骤概述安装必要的库加载CLIP模型定义数据集类提取图像特征进行重识别测试代码实现importosimporttorchimportclipfromtorch.utils.dataimportDataset,D
- 计算机设计大赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python
iuerfee
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习行人重识别(personreid)系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https:
- 行人重识别
NineDays66
人工智能
在人的感知系统所获得的信息中,视觉信息大约占到80%~85%。行人重识别(personre-identification)是近几年智能视频分析领域兴起的一项新技术,属于在复杂视频环境下的图像处理和分析范畴,是许多监控和安防应用中的主要任务,并且在计算机视觉领域获得了越来越多的关注。下面我们就仔细来聊聊行人重识别(ReID)。1.什么是行人重识别行人重识别(PersonRe-identificat
- 跨模态行人重识别:Cross-Modality Person Re-Identification with Generative Adversarial Training 学习记录笔记
深度学不会习
深度学习
目录摘要方法cmGANGeneratorDiscriminatorTrainingAlgorithmExperiments论文链接:https://www.ijcai.org/Proceedings/2018/0094.pdf摘要(1)提出一种新的跨模态生成对抗网络(称为cmGAN)。为了解决鉴别信息不足的问题,设计了一种基于生成对抗训练的鉴别器,从不同的模式中学习鉴别特征表示。(2)为了解决大规
- 跨模态行人重识别:Discover Cross-Modality Nuances for Visible-Infrared Person Re-Identification学习记录笔记
深度学不会习
学习
目录摘要网络结构具体方法MAMPAM模态分类损失共享特征ID损失中心簇损失总损失试验注意模式可视化分布结果原文链接:DiscoverCross-ModalityNuancesforVisible-InfraredPersonRe-Identification摘要提出了一种联合模态和模式对齐网络(MPANet)来发现可见红外人Re-ID不同模式中的跨模态细微差别,它引入了模态缓解模块和模式对齐模块来共
- 跨模态行人重识别:Dynamic Dual-Attentive Aggregation Learningfor Visible-Infrared Person Re-Identification学习笔记
深度学不会习
学习
目录摘要方法模态内加权聚合(IWPA)跨模态图结构化注意力(CGSA)GraphConstructionGraphAttention动态对偶聚合学习试验论文链接:DynamicDual-AttentiveAggregationLearningforVisible-InfraredPersonRe-Identification摘要通过挖掘VI-ReID的模态内部分级和跨模态图级上下文线索,提出了一种新
- 跨模态行人重识别:Modality Synergy Complement Learning withCascaded Aggregation for Visible-InfraredPerson 笔记
深度学不会习
深度学习python
目录简述贡献MSCLNet方法模态协同模块模态补充模块级联聚合策略子类级聚合类内聚合类间级上的聚合目标函数基于级联聚合的模态协同互补学习在可见光-红外人员识别中的应用简述级联聚合的模态协同互补学习网络(MSCLNET)。基本思想是协同两个模态来构造不同的身份鉴别语义和较少噪声的表示。然后,在这两种模式的优点下对协同表征进行了补充。此外,提出了级联聚合策略,用于细粒度的特征分布优化,该策略将子类、类
- 行人重识别(二)跨模态的行人重识别
石头儿啊
行人重识别计算机视觉人工智能
感谢前辈总结的论文列表,为了方便自己以后翻阅,链接搁这儿1.背景在我们现实生活中,可见光条件下的摄像机拍到的图像,往往会包含行人的大部分外观信息,然而现实中并不只需要在可视条件极佳的条件下进行监控,在夜晚或者可视条件极差的场景中也有监控的需要,这个时候,红外相机拍摄的图像便可用于行人的再识别。据我所知,现阶段大部分ReID工作都聚焦在RGB图像这种单一模态上,而基于RGB-IR的跨模态ReID工作
- 使用中间X模态的跨模态行人重识别
小小猿D
笔记
引入X模态作为辅助,将红外线--可见光跨模态学习转化为X-IR-V三模态学习,提出了一个X-红外-可见光(XIV)ReID跨模态学习框架。首先X模态由轻量型网络生成,其次,在xiv框架下,跨模态学习由一个精心设计的模态间隙约束引导,信息交换跨越可见、x和红外模态。基于红外图像的图像主要包括结构和形状信息X模态是一种伴随辅助模态,用于协调红外和可见光。一个轻量级X模态生成器和一个权重共享XIV跨模态
- 【跨模态行人重识别】RGB-Infrared Cross-Modality Person Re-Identification(ICCV2017)
渺渺404
跨模态行人重识别计算机视觉人工智能深度学习
文章目录摘要1介绍2SYSU-MM01数据集2.1数据集描述2.2评估标准3跨模态模型的网络结构比较3.1常见的深度模型网络结构3.2网络结构分析单流结构和双流结构在特殊情况下的联系(双流网络可以用单流网络表示)一般情况下的单流结构分析4深度零填充4.1零填充作为网络输入的分析(梯度分析)4.2RGB-IR应用深度零填充4.3跨模态学习的比较5实验5.1比较的模型5.2模型比较与分析6总结摘要行人
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- 跨模态行人重识别都需要学什么
ALGORITHM LOL
人工智能
跨模态行人重识别(Cross-ModalityPersonRe-identification,简称Cross-ModalityRe-ID)是计算机视觉领域的一项挑战性任务,旨在跨越不同模态之间(例如,可见光与红外线图像)识别同一行人。该任务涉及图像处理、特征提取、模态转换、深度学习等多个方面。1.基础知识计算机视觉与图像处理:理解图像基础(如像素、色彩空间)、图像变换、图像增强技术。机器学习基础:
- 基于深度学习的行人重识别(person reid) 计算机竞赛
Mr.D学长
pythonjava
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- 互联网加竞赛 基于深度学习的行人重识别(person reid)
Mr.D学长
pythonjava
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- 姿态估计概述
Diros1g
姿态估计
定义和优势单目摄像机拍摄的二维图像中预测行人的人体关键点坐标,为其他任务做支持如行人重识别、动作识别。目前分类两类:单人和多人基于计算机视觉的人体姿态佶计不需要额外的穿戴设备,该技术比传统的穿戴式动作捕捉技术成本更加低廉且灵活性更高人体姿态表示形式1.二位坐标关键点(人体主要关节)表达方式以二位坐标的形式(x,y),方法简洁,无序后处理2.空间热力图回归的数据是关键点落在该坐标的概率,优点定位更精
- 大创项目推荐 行人重识别(person reid) - 机器视觉 深度学习 opencv python
laafeer
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习行人重识别(personreid)系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https:
- 竞赛保研 基于深度学习的行人重识别(person reid)
iuerfee
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是基于深度学习的行人重识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1技术背景行人重识别技
- 大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid
laafeer
python
文章目录0前言1课题背景2效果展示3行人检测4行人重识别5其他工具6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的行人重识别算法研究与实现**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate
- 一些想法:关于行人检测与重识别
baidu_huihui
人工智能计算机视觉
本文主要是介绍我们录用于ECCV'18的一个工作:PersonSearchviaAMask-guidedTwo-streamCNNModel.这篇文章着眼于PersonSearch这个任务,即同时考虑行人检测(PedestrianDetection)与行人重识别(PersonRe-identification),简单探讨了一下行人检测与行人重识别这两个子任务之间的关联性,并尝试利用全景图像中的背景
- 论文阅读: AAAI 2022行人重识别方向论文-PFD_Net
菜鸟的追梦旅行
ReIDReID行人重识别深度学习
本篇博客用于记录一篇行人重识别方向的论文所提出的优化方法《Pose-GuidedFeatureDisentanglingforOccludedPersonRe-identificationBasedonTransformer》,论文中提出的PDF_Net模型的backbone是采用《TransReID:Transformer-basedObjectRe-Identification》的主干网络Tr
- 【2024 行人重识别最新进展】ReID3D:首个关注激光雷达行人 ReID 的工作!
BIT可达鸭
3d人工智能3维重建计算机视觉行人重识别
【2024行人重识别最新进展】ReID3D:首个关注激光雷达行人ReID的工作!摘要:数据集:方法模型:多任务预训练:ReIDNetwork:实验结果:结论:来源:Arxiv2023机构:清华大学&北京理工大学论文题目:LiDAR-basedPersonRe-identification本文是首个基于激光雷达的人ReID的工作,展示了在具有挑战现实世界的户外场景中,利用激光雷达进行的行人ReID的
- 行人Reid半自动化标注
贝猫说python
1、检测跟踪的方法得到一个视频的行人idid会有重叠的行人,一个人的多张图片变成多个id,针对这个问题,采用人脸的聚类方法,重新生成聚类后的id参考:半自动的行人重识别数据标注算法Tracking+infomap
- 浅析行人重识别
Shirleybebe
行人重识别在此先给出官方解释: 行人重识别(Personre-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。给定一个监控行人图像:给定一个希
- 论文阅读17 | Cross-modality Person re-identification with Shared-Specific Feature Transfer
Hygge MrYang
跨模态行人重识别网络机器学习
论文:Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer(基于共享特征和具体特征转移的跨模态行人重识别)出处:CVPR2020文章目录1.motivation2.proposedmethod2.1Two-streamfeatureextractor2.2Shared-SpecificTransferNetw
- 行人重识别RE-ID 琐碎知识点总结
xuluohongshang
行人重识别行人重识别Re-ID知识总结琐碎要点re-ID笔记
1.singleshot和mutishot前者是指gallery中每个人的图像为一张(N=1),而后者是指gallery中每个人的图像为N>1张图像,同样的Rank-1下,一般N越大,得到的识别率越高。2.gallery、probe和CMCgallery是候选行人库,probe是待查询输入,也叫查询图像(query),CMC是一种reid的性能评价方法,即CumulativeMatchCharac
- 行人重识别-REID
椒椒。
计算机视觉深度学习人工智能
行人重识别-REID一、REID二、为什么使用REID三、REID应用场景四、REID研究形式五、REID存在的挑战一、REID行人重识别-REID(personre-identification)也叫做行人再识别技术。利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。如下图所示:一个区域有多个摄像头拍
- 【毕业设计】深度学习行人重识别系统 - person reid
caxiou
毕业设计大数据深度学习人工智能计算机视觉行人重识别personreid
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言Hi,大家好,这里是丹成学长的毕设系列文章!对毕设有任何疑问都可以问学长哦!这两年开始,各个学校对毕设的要求越来越高,难度也越来越大…毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提
- 竞赛选题 行人重识别(person reid) - 机器视觉 深度学习 opencv python
laafeer
python
文章目录0前言1技术背景2技术介绍3重识别技术实现3.1数据集3.2PersonREID3.2.1算法原理3.2.2算法流程图4实现效果5部分代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习行人重识别(personreid)系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https:
- 人工智能 迁移学习
人工智能技术与咨询
深度学习机器学习人工智能
1.深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念;2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点;3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法;4.掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、Source-FreeDA上的应用;5.掌握深度迁移学习在语义分割、目标检测、行人重识别等任务中的
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓