RCNN系列——Faster RCNN anchor生成解析
一、简介
- Faster RCNN里的anchor 是一个矩形框,用于box regressor, 可以减少网络计算量, 把anchor 数目定义为 k k k,featur map每个点只预测 k k k个box,然后与anchor计算偏差,回归更加精准的框位置。假设feature map 尺寸为 W × H W \times H W×H,输出anchor总数目为 W × H × k W \times H \times k W×H×k.
- Faster RCNN里面每个anchor都有 ( x c e n t e r , y c e n t e r , w , h ) (x_{center},y_{center},w,h) (xcenter,ycenter,w,h)信息,也就是anchor的中心位置和长宽。还有 s c a l e scale scale和 r a t i o ratio ratio两个参数, s c a l e = [ 8 , 16 , 32 ] scale = [8,16,32] scale=[8,16,32], r a t i o = [ 0.5 , 1 , 2 ] ratio = [0.5,1,2] ratio=[0.5,1,2].scale是指anchor相对于基础anchor大小的比例,ratio是指面积相同的anchor 长宽比例,也就是说每一种scale的anchor都有3种面积相同,长宽不同的anchor,总共就有 k = 3 × 3 = 9 k = 3 \times 3 = 9 k=3×3=9个anchor。
- 后端网络是ZF时,基础anchor大小为 16 × 16 16 \times 16 16×16,也就是feature map 上一个点代表输入原图 16 × 16 16 \times 16 16×16区域。因为经过ZF网络提取的feature map的尺寸为原图的 1 16 \frac{1}{16} 161,所以基础大小为16。
- 经过scale 变换,anchor 大小有 8 × 16 = 128 , 16 × 16 = 256 , 32 × 16 = 512 8\times16 = 128,16\times 16 = 256,32 \times 16 =512 8×16=128,16×16=256,32×16=512三种尺寸。如下图,anchor起始坐标系为 128 × 128 128\times 128 128×128的左下角。
- 九个anchor的坐标信息 ( x 1 , y 1 , x 2 , y 2 ) (x1,y1,x2,y2) (x1,y1,x2,y2)(左上角和右下角)
anchors =
-83 -39 100 56
-175 -87 192 104
-359 -183 376 200
-55 -55 72 72
-119 -119 136 136
-247 -247 264 264
-35 -79 52 96
-79 -167 96 184
-167 -343 184 360
二、代码解析
- generate_anchors.py
- 函数1:def generate_anchors(base_size=16, ratios=[0.5, 1, 2],scales=2**np.arange(3, 6)),功能:先生成base anchor 16 × 16 16 \times 16 16×16大小的 ( x 1 , y 1 , x 2 , y 2 ) (x1,y1,x2,y2) (x1,y1,x2,y2),然后依次生成每个scale的ratio的anchor(3个),最后生成9个。
- 函数2:_whctrs(anchor): 功能:求 ( x c e n t e r , y c e n t e r , w , h ) (x_{center},y_{center},w,h) (xcenter,ycenter,w,h)
- 函数3:_ratio_enum(anchor, ratios)::功能:求所有ratios的anchor x 1 , y 1 , x 2 , y 2 x1,y1,x2,y2 x1,y1,x2,y2
- 函数4:_mkanchors(ws, hs, x_ctr, y_ctr): 功能: ( x c e n t e r , y c e n t e r , w , h ) (x_{center},y_{center},w,h) (xcenter,ycenter,w,h)转化为 x 1 , y 1 , x 2 , y 2 x1,y1,x2,y2 x1,y1,x2,y2
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Sean Bell
# --------------------------------------------------------
import numpy as np
# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
# >> anchors
#
# anchors =
#
# -83 -39 100 56
# -175 -87 192 104
# -359 -183 376 200
# -55 -55 72 72
# -119 -119 136 136
# -247 -247 264 264
# -35 -79 52 96
# -79 -167 96 184
# -167 -343 184 360
#array([[ -83., -39., 100., 56.],
# [-175., -87., 192., 104.],
# [-359., -183., 376., 200.],
# [ -55., -55., 72., 72.],
# [-119., -119., 136., 136.],
# [-247., -247., 264., 264.],
# [ -35., -79., 52., 96.],
# [ -79., -167., 96., 184.],
# [-167., -343., 184., 360.]])
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
scales=2**np.arange(3, 6)):
"""
Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, 15, 15) window.
"""
base_anchor = np.array([1, 1, base_size, base_size]) - 1
ratio_anchors = _ratio_enum(base_anchor, ratios)
anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales)
for i in xrange(ratio_anchors.shape[0])])
return anchors
def _whctrs(anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
def _mkanchors(ws, hs, x_ctr, y_ctr):
"""
Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, np.newaxis]
hs = hs[:, np.newaxis]
anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)))
return anchors
def _ratio_enum(anchor, ratios):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
size = w * h
size_ratios = size / ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * ratios)
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _scale_enum(anchor, scales):
"""
Enumerate a set of anchors for each scale wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
ws = w * scales
hs = h * scales
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
if __name__ == '__main__':
import time
t = time.time()
a = generate_anchors()
print time.time() - t
print a
from IPython import embed; embed()
- 参考信息图片
https://www.cnblogs.com/wangyong/p/8513563.html#4168178