LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的。基于链表也决定了它在随机访问方面要比ArrayList逊色一点。
除此之外,LinkedList还提供了一些可以使其作为栈、队列、双端队列的方法。这些方法中有些彼此之间只是名称的区别,以使得这些名字在特定的上下文中显得更加的合适。
先看LinkedList类的定义。
1 public class LinkedList2 extends AbstractSequentialList 3 implements List , Deque , Cloneable, java.io.Serializable
LinkedList继承自AbstractSequenceList、实现了List及Deque接口。其实AbstractSequenceList已经实现了List接口,这里标注出List只是更加清晰而已。AbstractSequenceList提供了List接口骨干性的实现以减少实现List接口的复杂度。Deque接口定义了双端队列的操作。
LinkedList中之定义了两个属性:
1 private transient Entryheader = new Entry (null, null, null); 2 private transient int size = 0;
size肯定就是LinkedList对象里面存储的元素个数了。LinkedList既然是基于链表实现的,那么这个header肯定就是链表的头结点了,Entry就是节点对象了。一下是Entry类的代码。
1 private static class Entry{ 2 E element; 3 Entry next; 4 Entry previous; 5 6 Entry(E element, Entry next, Entry previous) { 7 this.element = element; 8 this.next = next; 9 this.previous = previous; 10 } 11 }
只定义了存储的元素、前一个元素、后一个元素,这就是双向链表的节点的定义,每个节点只知道自己的前一个节点和后一个节点。
来看LinkedList的构造方法。
1 public LinkedList() { 2 header.next = header.previous = header; 3 } 4 public LinkedList(Collection extends E> c) { 5 this(); 6 addAll(c); 7 }
LinkedList提供了两个构造方法。第一个构造方法不接受参数,只是将header节点的前一节点和后一节点都设置为自身(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。来看addAll的内容。
1 public boolean addAll(Collection extends E> c) { 2 return addAll(size, c); 3 } 4 // index参数指定collection中插入的第一个元素的位置 5 public boolean addAll(int index, Collection extends E> c) { 6 // 插入位置超过了链表的长度或小于0,报IndexOutOfBoundsException异常 7 if (index < 0 || index > size) 8 throw new IndexOutOfBoundsException("Index: "+index+ 9 ", Size: "+size); 10 Object[] a = c.toArray(); 11 int numNew = a.length; 12 // 若需要插入的节点个数为0则返回false,表示没有插入元素 13 if (numNew==0) 14 return false; 15 modCount++; 16 // 保存index处的节点。插入位置如果是size,则在头结点前面插入,否则获取index处的节点 17 Entrysuccessor = (index==size ? header : entry(index)); 18 // 获取前一个节点,插入时需要修改这个节点的next引用 19 Entry predecessor = successor.previous; 20 // 按顺序将a数组中的第一个元素插入到index处,将之后的元素插在这个元素后面 21 for (int i=0; i ) { 22 // 结合Entry的构造方法,这条语句是插入操作,相当于C语言中链表中插入节点并修改指针 23 Entry e = new Entry ((E)a[i], successor, predecessor); 24 // 插入节点后将前一节点的next指向当前节点,相当于修改前一节点的next指针 25 predecessor.next = e; 26 // 相当于C语言中成功插入元素后将指针向后移动一个位置以实现循环的功能 27 predecessor = e; 28 } 29 // 插入元素前index处的元素链接到插入的Collection的最后一个节点 30 successor.previous = predecessor; 31 // 修改size 32 size += numNew; 33 return true; 34 }
构造方法中的调用了addAll(Collection extends E> c)方法,而在addAll(Collection extends E> c)方法中仅仅是将size当做index参数调用了addAll(int index,Collection extends E> c)方法。
1 private Entryentry(int index) { 2 if (index < 0 || index >= size) 3 throw new IndexOutOfBoundsException("Index: "+index+ 4 ", Size: "+size); 5 Entry e = header; 6 // 根据这个判断决定从哪个方向遍历这个链表 7 if (index < (size >> 1)) { 8 for (int i = 0; i <= index; i++) 9 e = e.next; 10 } else { 11 // 可以通过header节点向前遍历,说明这个一个循环双向链表,header的previous指向链表的最后一个节点,这也验证了构造方法中对于header节点的前后节点均指向自己的解释 12 for (int i = size; i > index; i--) 13 e = e.previous; 14 } 15 return e; 16 }
结合上面代码中的注释及双向循环链表的知识,应该很容易理解LinkedList构造方法所涉及的内容。下面开始分析LinkedList的其他方法。
add(E e)
1 public boolean add(E e) { 2 addBefore(e, header); 3 return true; 4 }
从上面的代码可以看出,add(E e)方法只是调用了addBefore(E e,Entry
addBefore(E e,Entry
1 private EntryaddBefore(E e, Entry entry) { 2 Entry newEntry = new Entry (e, entry, entry.previous); 3 newEntry.previous.next = newEntry; 4 newEntry.next.previous = newEntry; 5 size++; 6 modCount++; 7 return newEntry; 8 }
addBefore(E e,Entry
addBefore(E e,Entry
总结,addBefore(E e,Entry
add(int index,E e)
1 public void add(int index, E element) { 2 addBefore(element, (index==size ? header : entry(index))); 3 }
也是调用了addBefore(E e,Entry
构造方法,addAll(Collection extends E> c),add(E e),addBefor(E e,Entry
addFirst(E e)
1 public void addFirst(E e) { 2 addBefore(e, header.next); 3 }
addLast(E e)
1 public void addLast(E e) { 2 addBefore(e, header); 3 }
看上面的示意图,结合addBefore(E e,Entry
clear()
1 public void clear() { 2 Entrye = header.next; 3 // e可以理解为一个移动的“指针”,因为是循环链表,所以回到header的时候说明已经没有节点了 4 while (e != header) { 5 // 保留e的下一个节点的引用 6 Entry next = e.next; 7 // 接触节点e对前后节点的引用 8 e.next = e.previous = null; 9 // 将节点e的内容置空 10 e.element = null; 11 // 将e移动到下一个节点 12 e = next; 13 } 14 // 将header构造成一个循环链表,同构造方法构造一个空的LinkedList 15 header.next = header.previous = header; 16 // 修改size 17 size = 0; 18 modCount++; 19 }
上面代码中的注释已经足以解释这段代码的逻辑,需要注意的是提到的“指针”仅仅是概念上的类比,Java并不存在“指针”的概念,而只有引用,为了便于理解所以部分说明使用了“指针”。
contains(Object o)
1 public boolean contains(Object o) { 2 return indexOf(o) != -1; 3 }
仅仅只是判断o在链表中的索引。先看indexOf(Object o)方法。
1 public int indexOf(Object o) { 2 int index = 0; 3 if (o==null) { 4 for (Entry e = header.next; e != header; e = e.next) { 5 if (e.element==null) 6 return index; 7 index++; 8 } 9 } else { 10 for (Entry e = header.next; e != header; e = e.next) { 11 if (o.equals(e.element)) 12 return index; 13 index++; 14 } 15 } 16 return -1; 17 }
indexOf(Object o)判断o链表中是否存在节点的element和o相等,若相等则返回该节点在链表中的索引位置,若不存在则放回-1。
contains(Object o)方法通过判断indexOf(Object o)方法返回的值是否是-1来判断链表中是否包含对象o。
element()
1 public E element() { 2 return getFirst(); 3 }
getFirst()
1 public E getFirst() { 2 if (size==0) 3 throw new NoSuchElementException(); 4 return header.next.element; 5 }
element()方法调用了getFirst()返回链表的第一个节点的元素。为什么要提供功能一样的两个方法,像是包装了一下名字?其实这只是为了在不同的上下文“语境”中能通过更贴切的方法名调用罢了。
get(int index)
1 public E get(int index) { 2 return entry(index).element; 3 }
get(int index)方法用于获得指定索引位置的节点的元素。它通过entry(int index)方法获取节点。entry(int index)方法遍历链表并获取节点,在上面有说明过,不再陈述。
set(int index,E element)
1 public E set(int index, E element) { 2 Entrye = entry(index); 3 E oldVal = e.element; 4 e.element = element; 5 return oldVal; 6 }
先获取指定索引的节点,之后保留原来的元素,然后用element进行替换,之后返回原来的元素。
getLast()
1 public E getLast() { 2 if (size==0) 3 throw new NoSuchElementException(); 4 return header.previous.element; 5 }
getLast()方法和getFirst()方法类似,只是获取的是header节点的前一个节点的元素。因为是循环链表,所以header节点的前一节点就是链表的最后一个节点。
lastIndexOf(Object o)
1 public int lastIndexOf(Object o) { 2 int index = size; 3 if (o==null) { 4 for (Entry e = header.previous; e != header; e = e.previous) { 5 index--; 6 if (e.element==null) 7 return index; 8 } 9 } else { 10 for (Entry e = header.previous; e != header; e = e.previous) { 11 index--; 12 if (o.equals(e.element)) 13 return index; 14 } 15 } 16 return -1; 17 }
因为查找的是last index,即最后一次出现的位置,所以采用由后向前的遍历方式。因为采用了有后向前的遍历,所以index被赋值为size,并且循环体内执行时都进行减操作。分两种情况判断是否存在,分别是null和不为空。
offer(E e)
1 public boolean offer(E e) { 2 return add(e); 3 }
在链表尾部插入元素。
offerFirst(E e)
1 public boolean offerFirst(E e) { 2 addFirst(e); 3 return true; 4 }
在链表开头插入元素。
offerLast(E e)
1 public boolean offerLast(E e) { 2 addLast(e); 3 return true; 4 }
在链表末尾插入元素。
上面这三个方法都只是调用了相应的add方法,同样只是提供了不同的方法名在不同的语境下使用。
peek()
1 public E peek() { 2 if (size==0) 3 return null; 4 return getFirst(); 5 }
peekFirst()
1 public E peekFirst() { 2 if (size==0) 3 return null; 4 return getFirst(); 5 }
peekLast()
1 public E peekLast() { 2 if (size==0) 3 return null; 4 return getLast(); 5 }
上面的三个方法也很简单,只是调用了对应的get方法。
poll()
1 public E poll() { 2 if (size==0) 3 return null; 4 return removeFirst(); 5 }
pollFirst()
1 public E pollFirst() { 2 if (size==0) 3 return null; 4 return removeFirst(); 5 }
pollLast()
1 public E pollLast() { 2 if (size==0) 3 return null; 4 return removeLast(); 5 }
poll相关的方法都是获取并移除某个元素。都是和remove操作相关。
pop()
1 public E pop() { 2 return removeFirst(); 3 }
push(E e)
1 public void push(E e) { 2 addFirst(e); 3 }
这两个方法对应栈的操作,即弹出一个元素和压入一个元素,仅仅是调用了removeFirst()和addFirst()方法。
下面集中看remove相关操作的方法。
remove()
1 public E remove() { 2 return removeFirst(); 3 }
remove(int index)
1 public E remove(int index) { 2 return remove(entry(index)); 3 }
remove(Object o)
1 public boolean remove(Object o) { 2 if (o==null) { 3 for (Entrye = header.next; e != header; e = e.next) { 4 if (e.element==null) { 5 remove(e); 6 return true; 7 } 8 } 9 } else { 10 for (Entry e = header.next; e != header; e = e.next) { 11 if (o.equals(e.element)) { 12 remove(e); 13 return true; 14 } 15 } 16 } 17 return false; 18 }
removeFirst()
1 public E removeFirst() { 2 return remove(header.next); 3 }
removeLast()
1 public E removeLast() { 2 return remove(header.previous); 3 }
removeFirstOccurrence()
1 public boolean removeFirstOccurrence(Object o) { 2 return remove(o); 3 }
removeLastOccurence()
1 public boolean removeLastOccurrence(Object o) { 2 if (o==null) { 3 for (Entrye = header.previous; e != header; e = e.previous) { 4 if (e.element==null) { 5 remove(e); 6 return true; 7 } 8 } 9 } else { 10 for (Entry e = header.previous; e != header; e = e.previous) { 11 if (o.equals(e.element)) { 12 remove(e); 13 return true; 14 } 15 } 16 } 17 return false; 18 }
几个remove方法最终都是调用了一个私有方法:remove(Entry
1 private E remove(Entrye) { 2 if (e == header) 3 throw new NoSuchElementException(); 4 // 保留将被移除的节点e的内容 5 E result = e.element; 6 // 将前一节点的next引用赋值为e的下一节点 7 e.previous.next = e.next; 8 // 将e的下一节点的previous赋值为e的上一节点 9 e.next.previous = e.previous; 10 // 上面两条语句的执行已经导致了无法在链表中访问到e节点,而下面解除了e节点对前后节点的引用 11 e.next = e.previous = null; 12 // 将被移除的节点的内容设为null 13 e.element = null; 14 // 修改size大小 15 size--; 16 modCount++; 17 // 返回移除节点e的内容 18 return result; 19 }
clone()
1 public Object clone() { 2 LinkedListclone = null; 3 try { 4 clone = (LinkedList ) super.clone(); 5 } catch (CloneNotSupportedException e) { 6 throw new InternalError(); 7 } 8 clone.header = new Entry (null, null, null); 9 clone.header.next = clone.header.previous = clone.header; 10 clone.size = 0; 11 clone.modCount = 0; 12 for (Entry e = header.next; e != header; e = e.next) 13 clone.add(e.element); 14 return clone; 15 }
调用父类的clone()方法初始化对象链表clone,将clone构造成一个空的双向循环链表,之后将header的下一个节点开始将逐个节点添加到clone中。最后返回克隆的clone对象。
toArray()
1 public Object[] toArray() { 2 Object[] result = new Object[size]; 3 int i = 0; 4 for (Entrye = header.next; e != header; e = e.next) 5 result[i++] = e.element; 6 return result; 7 }
创建大小和LinkedList相等的数组result,遍历链表,将每个节点的元素element复制到数组中,返回数组。
toArray(T[] a)
1 publicT[] toArray(T[] a) { 2 if (a.length < size) 3 a = (T[])java.lang.reflect.Array.newInstance( 4 a.getClass().getComponentType(), size); 5 int i = 0; 6 Object[] result = a; 7 for (Entry e = header.next; e != header; e = e.next) 8 result[i++] = e.element; 9 if (a.length > size) 10 a[size] = null; 11 return a; 12 }
先判断出入的数组a的大小是否足够,若大小不够则拓展。这里用到了发射的方法,重新实例化了一个大小为size的数组。之后将数组a赋值给数组result,遍历链表向result中添加的元素。最后判断数组a的长度是否大于size,若大于则将size位置的内容设置为null。返回a。
从代码中可以看出,数组a的length小于等于size时,a中所有元素被覆盖,被拓展来的空间存储的内容都是null;若数组a的length的length大于size,则0至size-1位置的内容被覆盖,size位置的元素被设置为null,size之后的元素不变。
为什么不直接对数组a进行操作,要将a赋值给result数组之后对result数组进行操作?
---------------------------------------------------------------------------------------------------------------------------------
LinkedList的Iterator
除了Entry,LinkedList还有一个内部类:ListItr。
ListItr实现了ListIterator接口,可知它是一个迭代器,通过它可以遍历修改LinkedList。
在LinkedList中提供了获取ListItr对象的方法:listIterator(int index)。
1 public ListIteratorlistIterator(int index) { 2 return new ListItr(index); 3 }
该方法只是简单的返回了一个ListItr对象。
LinkedList中还有通过集成获得的listIterator()方法,该方法只是调用了listIterator(int index)并且传入0。
下面详细分析ListItr。
1 private class ListItr implements ListIterator{ 2 // 最近一次返回的节点,也是当前持有的节点 3 private Entry lastReturned = header; 4 // 对下一个元素的引用 5 private Entry next; 6 // 下一个节点的index 7 private int nextIndex; 8 private int expectedModCount = modCount; 9 // 构造方法,接收一个index参数,返回一个ListItr对象 10 ListItr(int index) { 11 // 如果index小于0或大于size,抛出IndexOutOfBoundsException异常 12 if (index < 0 || index > size) 13 throw new IndexOutOfBoundsException("Index: "+index+ 14 ", Size: "+size); 15 // 判断遍历方向 16 if (index < (size >> 1)) { 17 // next赋值为第一个节点 18 next = header.next; 19 // 获取指定位置的节点 20 for (nextIndex=0; nextIndex ) 21 next = next.next; 22 } else { 23 // else中的处理和if块中的处理一致,只是遍历方向不同 24 next = header; 25 for (nextIndex=size; nextIndex>index; nextIndex--) 26 next = next.previous; 27 } 28 } 29 // 根据nextIndex是否等于size判断时候还有下一个节点(也可以理解为是否遍历完了LinkedList) 30 public boolean hasNext() { 31 return nextIndex != size; 32 } 33 // 获取下一个元素 34 public E next() { 35 checkForComodification(); 36 // 如果nextIndex==size,则已经遍历完链表,即没有下一个节点了(实际上是有的,因为是循环链表,任何一个节点都会有上一个和下一个节点,这里的没有下一个节点只是说所有节点都已经遍历完了) 37 if (nextIndex == size) 38 throw new NoSuchElementException(); 39 // 设置最近一次返回的节点为next节点 40 lastReturned = next; 41 // 将next“向后移动一位” 42 next = next.next; 43 // index计数加1 44 nextIndex++; 45 // 返回lastReturned的元素 46 return lastReturned.element; 47 } 48 49 public boolean hasPrevious() { 50 return nextIndex != 0; 51 } 52 // 返回上一个节点,和next()方法相似 53 public E previous() { 54 if (nextIndex == 0) 55 throw new NoSuchElementException(); 56 57 lastReturned = next = next.previous; 58 nextIndex--; 59 checkForComodification(); 60 return lastReturned.element; 61 } 62 63 public int nextIndex() { 64 return nextIndex; 65 } 66 67 public int previousIndex() { 68 return nextIndex-1; 69 } 70 // 移除当前Iterator持有的节点 71 public void remove() { 72 checkForComodification(); 73 Entry lastNext = lastReturned.next; 74 try { 75 LinkedList.this.remove(lastReturned); 76 } catch (NoSuchElementException e) { 77 throw new IllegalStateException(); 78 } 79 if (next==lastReturned) 80 next = lastNext; 81 else 82 nextIndex--; 83 lastReturned = header; 84 expectedModCount++; 85 } 86 // 修改当前节点的内容 87 public void set(E e) { 88 if (lastReturned == header) 89 throw new IllegalStateException(); 90 checkForComodification(); 91 lastReturned.element = e; 92 } 93 // 在当前持有节点后面插入新节点 94 public void add(E e) { 95 checkForComodification(); 96 // 将最近一次返回节点修改为header 97 lastReturned = header; 98 addBefore(e, next); 99 nextIndex++; 100 expectedModCount++; 101 } 102 // 判断expectedModCount和modCount是否一致,以确保通过ListItr的修改操作正确的反映在LinkedList中 103 final void checkForComodification() { 104 if (modCount != expectedModCount) 105 throw new ConcurrentModificationException(); 106 } 107 }
下面是一个ListItr的使用实例。
1 LinkedListlist = new LinkedList (); 2 list.add("First"); 3 list.add("Second"); 4 list.add("Thrid"); 5 System.out.println(list); 6 ListIterator itr = list.listIterator(); 7 while (itr.hasNext()) { 8 System.out.println(itr.next()); 9 } 10 try { 11 System.out.println(itr.next());// throw Exception 12 } catch (Exception e) { 13 // TODO: handle exception 14 } 15 itr = list.listIterator(); 16 System.out.println(list); 17 System.out.println(itr.next()); 18 itr.add("new node1"); 19 System.out.println(list); 20 itr.add("new node2"); 21 System.out.println(list); 22 System.out.println(itr.next()); 23 itr.set("modify node"); 24 System.out.println(list); 25 itr.remove(); 26 System.out.println(list);
1 结果: 2 [First, Second, Thrid] 3 First 4 Second 5 Thrid 6 [First, Second, Thrid] 7 First 8 [First, new node1, Second, Thrid] 9 [First, new node1, new node2, Second, Thrid] 10 Second 11 [First, new node1, new node2, modify node, Thrid] 12 [First, new node1, new node2, Thrid]
LinkedList还有一个提供Iterator的方法:descendingIterator()。该方法返回一个DescendingIterator对象。DescendingIterator是LinkedList的一个内部类。
1 public Iterator<E> descendingIterator() { 2 return new DescendingIterator(); 3 }
下面分析详细分析DescendingIterator类。
1 private class DescendingIterator implements Iterator { 2 // 获取ListItr对象 3 final ListItr itr = new ListItr(size()); 4 // hasNext其实是调用了itr的hasPrevious方法 5 public boolean hasNext() { 6 return itr.hasPrevious(); 7 } 8 // next()其实是调用了itr的previous方法 9 public E next() { 10 return itr.previous(); 11 } 12 public void remove() { 13 itr.remove(); 14 } 15 }
从类名和上面的代码可以看出这是一个反向的Iterator,代码很简单,都是调用的ListItr类中的方法。