HBase的查询实现只提供两种方式:
1、按指定RowKey 获取唯一一条记录,get方法(org.apache.hadoop.hbase.client.Get)
Get 的方法处理分两种 : 设置了ClosestRowBefore 和没有设置的rowlock .主要是用来保证行的事务性,即每个get 是以一个row 来标记的.一个row中可以有很多family 和column.
2、按指定的条件获取一批记录,scan方法(org.apache.Hadoop.hbase.client.Scan)实现条件查询功能使用的就是scan 方式.
1)scan 可以通过setCaching 与setBatch 方法提高速度(以空间换时间);
2)scan 可以通过setStartRow 与setEndRow 来限定范围([start,end)start 是闭区间,
end 是开区间)。范围越小,性能越高。
3)、scan 可以通过setFilter 方法添加过滤器,这也是分页、多条件查询的基础。
HBase中scan并不像大家想象的一样直接发送一个命令过去,服务器就将满足扫描条件的所有数据一次性返回给客户端。而实际上它的工作原理如下图所示:
上图右侧是HBase scan的客户端代码,其中for循环中每次遍历ResultScanner对象获取一行记录,实际上在客户端层面都会调用一次next请求。next请求整个流程可以分为如下几个步骤:
HBase 每次 scan 的数据量可能会比较大,客户端不会一次性全部把数据从服务端拉回来。而是通过多次 rpc 分批次的拉取。类似于 TCP 协议里面一段一段的传输,可以做到细粒度的流量控制。至于如何调优,控制每次 rpc 拉取的数据量,就可以通过三个参数来控制。
.setCaching => .setNumberOfRowsFetchSize (客户端每次 rpc fetch 的行数)
.setBatch => .setColumnsChunkSize (客户端每次获取的列数)
.setMaxResultSize => .setMaxResultByteSize (客户端缓存的最大字节数)
要计算一次扫描操作的RPC请求的次数,用户需要先计算出行数和每行列数的乘积。然后用这个值除以批量大小和每行列数中较小的那个值。最后再用除得的结果除以扫描器缓存值。 用数学公式表示如下:
RPC 返回的个数 = (row数 * 每行的列数)/ Min(每行列数,Batch大小) / Caching大小
Result 返回的个数 =( row数 * 每行的列数 )/ Min(每行列数,Batch大小)
在hbase shell中查询数据,可以在hbase shell中直接使用过滤器:
# hbase shell > scan 'tablename',STARTROW=>'start',COLUMNS=>['family:qualifier'],FILTER=>"ValueFilter(=,'substring:88')"
如上命令所示,查询的是表名为testByCrq,过滤方式是通过value过滤,匹配出value含111的数据。
因在hbase shell中一些操作比较麻烦(比如删除字符需先按住ctrl在点击退格键),且退出后,查询的历史纪录不可考,故如下方式是比较方便的一种:
# echo "scan 'testByCrq', FILTER=>\"ValueFilter(=,'substring:111')\"" | hbase shell
如上命令,可在bash中直接使用,表名是testByCrq,过滤方式是通过value过滤,匹配出value含111的数据,中间的"需要用\转义。
create 'test1', 'lf', 'sf'
-- lf: column family of LONG values (binary value)
-- sf: column family of STRING values
put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123'
put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'
put 'test1', 'user3|ts7', 'lf:c1', 12345
put 'test1', 'user3|ts8', 'lf:c1', 67890
scan 'hbase:meta'
scan 'hbase:meta', {COLUMNS => 'info:regioninfo'}
scan 'ns1:t1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW => 'xyz'}
scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW => 'xyz'}
scan 't1', {COLUMNS => 'c1', TIMERANGE => [1303668804, 1303668904]}
scan 't1', {REVERSED => true}
rowkey为user1开头的
scan 'test1', FILTER => "PrefixFilter ('user1')"
ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version KeyOnlyFilter: 只要key,不要value
scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=
查询rowkey里面包含ts3的
scan 'test1', FILTER=>"RowFilter(=,'substring:ts3')"
ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1554865926412, value=sku123
从user1|ts2开始,找到所有的rowkey以user1开头的
scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
从user1|ts2开始,找到所有的到rowkey以user2开头
scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188 user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
谁的值=sku188
scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
谁的值包含88
scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
值小于等于20000
scan 'test1', FILTER=>"ValueFilter(<=,'binary:20000')"
ROW COLUMN+CELL
user3|ts7 column=lf:c1, timestamp=1554866187587, value=12345
注意:如果查询值大于20000,会查出所有值,因为“sku188”等值转为二进制后都大于20000。
substring不能使用小于等于等符号。
column为c2,值包含88的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"
ROW COLUMN+CELL
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过搜索进来的(column为s)值包含123或者222的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"
ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
列族查询
scan 'test1', FILTER=>"FamilyFilter(=,'substring:lf')"
ROW COLUMN+CELL
user3|ts7 column=lf:c1, timestamp=1554866187587, value=12345
user3|ts8 column=lf:c1, timestamp=1554866294485, value=67890
scan 'test1',{FILTER=>"TimestampsFilter(1448069941270,1548069941230)" }
HBase 的基本 API,包括增、删、改、查等。
增、删都是相对简单的操作,与传统的 RDBMS 相比,这里的查询操作略显苍白,只能根据特性的行键进行查询(Get)或者根据行键的范围来查询(Scan)。
HBase 不仅提供了这些简单的查询,而且提供了更加高级的过滤器(Filter)来查询。
过滤器可以根据列族、列、版本等更多的条件来对数据进行过滤,基于 HBase 本身提供的三维有序(行键,列,版本有序),这些过滤器可以高效地完成查询过滤的任务,带有过滤器条件的 RPC 查询请求会把过滤器分发到各个 RegionServer(这是一个服务端过滤器),这样也可以降低网络传输的压力。
使用过滤器至少需要两类参数:
HBase 提供了枚举类型的变量来表示这些抽象的操作符:
LESS
LESS_OR_EQUAL
EQUAL
NOT_EQUAL
GREATER_OR_EQUAL
GREATER
NO_OP
代表具体的逻辑,例如字节级的比较,字符串级的比较等。
参数基础
有两个参数类在各类Filter中经常出现,统一介绍下:
(1)比较运算符 CompareFilter.CompareOp
比较运算符用于定义比较关系,可以有以下几类值供选择:
EQUAL 相等
GREATER 大于
GREATER_OR_EQUAL 大于等于
LESS 小于
LESS_OR_EQUAL 小于等于
NOT_EQUAL 不等于
(2)比较器 ByteArrayComparable
通过比较器可以实现多样化目标匹配效果,比较器有以下子类可以使用:
BinaryComparator 匹配完整字节数组
BinaryPrefixComparator 匹配字节数组前缀
BitComparator
NullComparator
RegexStringComparator 正则表达式匹配
SubstringComparator 子串匹配
FilterList 代表一个过滤器链,它可以包含一组即将应用于目标数据集的过滤器,过滤器间具有“与” FilterList.Operator.MUST_PASS_ALL 和“或” FilterList.Operator.MUST_PASS_ONE 关系。
官网实例代码,两个“或”关系的过滤器的写法:
FilterList list = new FilterList(FilterList.Operator.MUST_PASS_ONE); //数据只要满足一组过滤器中的一个就可以
SingleColumnValueFilter filter1 = new SingleColumnValueFilter(cf,column,CompareOp.EQUAL,Bytes.toBytes("my value"));
list.add(filter1);
SingleColumnValueFilter filter2 = new SingleColumnValueFilter(cf,column,CompareOp.EQUAL,Bytes.toBytes("my other value"));
list.add(filter2);
Scan scan = new Scan();
scan.setFilter(list);
SingleColumnValueFilter 用于测试列值相等 (CompareOp.EQUAL ), 不等 (CompareOp.NOT_EQUAL),或单侧范围 (e.g., CompareOp.GREATER)。
构造函数:
(1)比较的关键字是一个字符数组
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, byte[] value)
(2)比较的关键字是一个比较器(比较器下一小节做介绍)
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, ByteArrayComparable comparator)
注意:根据列的值来决定这一行数据是否返回,落脚点在行,而不是列。我们可以设置filter.setFilterIfMissing(true);如果为true,当这一列不存在时,不会返回,如果为false,当这一列不存在时,会返回所有的列信息
测试表user内容如下:
Table table = connection.getTable(TableName.valueOf("user"));
SingleColumnValueFilter scvf= new SingleColumnValueFilter(Bytes.toBytes("account"), Bytes.toBytes("name"),
CompareOp.EQUAL,"zhangsan".getBytes());
scvf.setFilterIfMissing(true); //默认为false, 没有此列的数据也会返回 ,为true则只返回name=lisi的数据
Scan scan = new Scan();
scan.setFilter(scvf);
ResultScanner resultScanner = table.getScanner(scan);
for (Result result : resultScanner) {
List cells= result.listCells();
for (Cell cell : cells) {
String row = Bytes.toString(result.getRow());
String family1 = Bytes.toString(CellUtil.cloneFamily(cell));
String qualifier = Bytes.toString(CellUtil.cloneQualifier(cell));
String value = Bytes.toString(CellUtil.cloneValue(cell));
System.out.println("[row:"+row+"],[family:"+family1+"],[qualifier:"+qualifier+"]"+ ",[value:"+value+"],[time:"+cell.getTimestamp()+"]");
}
}
|
如果setFilterIfMissing(true), 有匹配只会返回当前列所在的行数据,基于行的数据 country 也返回了,因为他么你的rowkey是相同的
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
如果setFilterIfMissing(false),有匹配的列的值相同会返回,没有此列的 name的也会返回,, 不匹配的name则不会返回。
下面 红色是匹配列内容的会返回,其他的不是account:name列也会返回,, name=lisi的不会返回,因为不匹配。
[row:lisi_1495527849910],[family:account],[qualifier:idcard],[value:42963319861234561230],[time:1495556647872]
[row:lisi_1495527850111],[family:account],[qualifier:password],[value:123451231236],[time:1495556648013]
[row:lisi_1495527850114],[family:address],[qualifier:city],[value:黄埔],[time:1495556648017]
[row:lisi_1495527850136],[family:address],[qualifier:province],[value:shanghai],[time:1495556648041]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21],[time:1495556648045]
[row:lisi_1495527850154],[family:info],[qualifier:sex],[value:女],[time:1495556648056]
[row:lisi_1495527850159],[family:userid],[qualifier:id],[value:002],[time:1495556648060]
[row:wangwu_1495595824517],[family:userid],[qualifier:id],[value:009],[time:1495624624131]
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898],[time:1495636370056]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
[row:zhangsan_1495527850951],[family:address],[qualifier:province],[value:guangdong],[time:1495556648855]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
[row:zhangsan_1495527851080],[family:info],[qualifier:sex],[value:男],[time:1495556648983]
[row:zhangsan_1495527851095],[family:userid],[qualifier:id],[value:001],[time:1495556648996]
由于HBase 采用键值对保存内部数据,键值元数据过滤器评估一行的键(ColumnFamily:Qualifiers)是否存在
构造函数:
FamilyFilter(CompareFilter.CompareOp familyCompareOp, ByteArrayComparable familyComparator)
代码如下:
public static ResultScanner getDataFamilyFilter(String tableName,String family) throws IOException{
Table table = connection.getTable(TableName.valueOf("user"));
FamilyFilter ff = new FamilyFilter(CompareOp.EQUAL ,
new BinaryComparator(Bytes.toBytes("account"))); //表中不存在account列族,过滤结果为空
// new BinaryPrefixComparator(value) //匹配字节数组前缀
// new RegexStringComparator(expr) // 正则表达式匹配
// new SubstringComparator(substr)// 子字符串匹配
Scan scan = new Scan();
// 通过scan.addFamily(family) 也可以实现此操作
scan.setFilter(ff);
ResultScanner resultScanner = table.getScanner(scan);
return resultScanner;
}
测试结果:查询的都是account列簇的内容
[row:lisi_1495527849910],[family:account],[qualifier:idcard],[value:42963319861234561230],[time:1495556647872]
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:lisi_1495527850111],[family:account],[qualifier:password],[value:123451231236],[time:1495556648013]
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898],[time:1495636370056]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
构造函数:
QualifierFilter(CompareFilter.CompareOp op, ByteArrayComparable qualifierComparator)
Table table = connection.getTable(TableName.valueOf("user"));
QualifierFilter ff = new QualifierFilter(
CompareOp.EQUAL , new BinaryComparator(Bytes.toBytes("name")));
// new BinaryPrefixComparator(value) //匹配字节数组前缀
// new RegexStringComparator(expr) // 正则表达式匹配
// new SubstringComparator(substr)// 子字符串匹配
Scan scan = new Scan();
// 通过scan.addFamily(family) 也可以实现此操作
scan.setFilter(ff);
ResultScanner resultScanner = table.getScanner(scan);
测试结果:只返回 name 的列内容
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
( 该功能用QualifierFilter也能实现 )
构造函数:
ColumnPrefixFilter(byte[] prefix)
Table table = connection.getTable(TableName.valueOf("user"));
ColumnPrefixFilter ff = new ColumnPrefixFilter(Bytes.toBytes("name"));
Scan scan = new Scan();
// 通过QualifierFilter的 newBinaryPrefixComparator也可以实现
scan.setFilter(ff);
ResultScanner resultScanner = table.getScanner(scan);
返回结果:
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定多个前缀
byte[][] prefixes = new byte[][] {Bytes.toBytes("name"), Bytes.toBytes("age")};
//返回所有行中以name或者age打头的列的数据
MultipleColumnPrefixFilter ff = new MultipleColumnPrefixFilter(prefixes);
Scan scan = new Scan();
scan.setFilter(ff);
ResultScanner rs = table.getScanner(scan);
结果:
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21],[time:1495556648045]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
构造函数:
ColumnRangeFilter(byte[] minColumn, boolean minColumnInclusive, byte[] maxColumn, boolean maxColumnInclusive)
参数解释:
minColumn - 列范围的最小值,如果为空,则没有下限;
minColumnInclusive - 列范围是否包含minColumn ;
maxColumn - 列范围最大值,如果为空,则没有上限;
maxColumnInclusive - 列范围是否包含maxColumn 。
代码:
Table table = connection.getTable(TableName.valueOf("user"));
byte[] startColumn = Bytes.toBytes("a");
byte[] endColumn = Bytes.toBytes("d");
//返回所有列中从a到d打头的范围的数据,
ColumnRangeFilter ff = new ColumnRangeFilter(startColumn, true, endColumn, true);
Scan scan = new Scan();
scan.setFilter(ff);
ResultScanner rs = table.getScanner(scan);
结果:返回列名开头是a 到 d的所有列数据
[row:lisi_1495527850114],[family:address],[qualifier:city],[value:黄埔],[time:1495556648017]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21],[time:1495556648045]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
当需要根据行键特征查找一个范围的行数据时,使用Scan的startRow和stopRow会更高效,但是,startRow和stopRow只能匹配行键的开始字符,而不能匹配中间包含的字符:
byte[] startColumn = Bytes.toBytes("azha");
byte[] endColumn = Bytes.toBytes("dddf");
Scan scan = new Scan(startColumn,endColumn);
当需要针对行键进行更复杂的过滤时,可以使用RowFilter:
构造函数:
RowFilter(CompareFilter.CompareOp rowCompareOp, ByteArrayComparable rowComparator)
代码:
Table table = connection.getTable(TableName.valueOf("user"));
RowFilter rf = new RowFilter(CompareOp.EQUAL ,
new SubstringComparator("zhangsan"));
// new BinaryPrefixComparator(value) //匹配字节数组前缀
// new RegexStringComparator(expr) // 正则表达式匹配
// new SubstringComparator(substr)// 子字符串匹配
Scan scan = new Scan();
scan.setFilter(rf);
ResultScanner rs = table.getScanner(scan);
结果:
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898],[time:1495636370056]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
[row:zhangsan_1495527850951],[family:address],[qualifier:province],[value:guangdong],[time:1495556648855]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
[row:zhangsan_1495527851080],[family:info],[qualifier:sex],[value:男],[time:1495556648983]
[row:zhangsan_1495527851095],[family:userid],[qualifier:id],[value:001],[time:1495556648996]
指定页面行数,返回对应行数的结果集。
需要注意的是,该过滤器并不能保证返回的结果行数小于等于指定的页面行数,因为过滤器是分别作用到各个region server的,它只能保证当前region返回的结果行数不超过指定页面行数。
构造函数:
PageFilter(long pageSize)
代码:
Table table = connection.getTable(TableName.valueOf("user"));
PageFilter pf = new PageFilter(2L);
Scan scan = new Scan();
scan.setFilter(pf);
scan.setStartRow(Bytes.toBytes("zhangsan_"));
ResultScanner rs = table.getScanner(scan);
结果:返回的结果实际上有四条,因为这数据来自不同RegionServer,
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898],[time:1495636370056]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan],[time:1495556648729]
根据整行中的每个列来做过滤,只要存在一列不满足条件,整行都被过滤掉。
例如,如果一行中的所有列代表的是不同物品的重量,则真实场景下这些数值都必须大于零,我们希望将那些包含任意列值为0的行都过滤掉。
在这个情况下,我们结合ValueFilter和SkipFilter共同实现该目的:
scan.setFilter(new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL,new BinaryComparator(Bytes.toBytes(0))));
构造函数:
SkipFilter(Filter filter)
代码:
Table table = connection.getTable(TableName.valueOf("user"));
SkipFilter sf = new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL,
new BinaryComparator(Bytes.toBytes("zhangsan"))));
Scan scan = new Scan();
scan.setFilter(sf);
ResultScanner rs = table.getScanner(scan);
结果:
[row:lisi_1495527849910],[family:account],[qualifier:idcard],[value:42963319861234561230],[time:1495556647872]
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:lisi_1495527850111],[family:account],[qualifier:password],[value:123451231236],[time:1495556648013]
[row:lisi_1495527850114],[family:address],[qualifier:city],[value:黄埔],[time:1495556648017]
[row:lisi_1495527850136],[family:address],[qualifier:province],[value:shanghai],[time:1495556648041]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21],[time:1495556648045]
[row:lisi_1495527850154],[family:info],[qualifier:sex],[value:女],[time:1495556648056]
[row:lisi_1495527850159],[family:userid],[qualifier:id],[value:002],[time:1495556648060]
[row:wangwu_1495595824517],[family:userid],[qualifier:id],[value:009],[time:1495624624131]
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898],[time:1495636370056]
[row:zhangsan_1495527850951],[family:address],[qualifier:province],[value:guangdong],[time:1495556648855]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
[row:zhangsan_1495527851080],[family:info],[qualifier:sex],[value:男],[time:1495556648983]
[row:zhangsan_1495527851095],[family:userid],[qualifier:id],[value:001],[time:1495556648996]
和原来数据相比 列值为name的 zhagnsan的所在行的 rowkey 为 zhangsan_1495527850824 在上面结果中是过滤了
[row:lisi_1495527849910],[family:account],[qualifier:idcard],[value:42963319861234561230]
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi]
[row:lisi_1495527850111],[family:account],[qualifier:password],[value:123451231236]
[row:lisi_1495527850114],[family:address],[qualifier:city],[value:黄埔]
[row:lisi_1495527850136],[family:address],[qualifier:province],[value:shanghai]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21]
[row:lisi_1495527850154],[family:info],[qualifier:sex],[value:女]
[row:lisi_1495527850159],[family:userid],[qualifier:id],[value:002]
[row:wangwu_1495595824517],[family:userid],[qualifier:id],[value:009]
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646]
[row:zhangsan_1495527850759],[family:account],[qualifier:passport],[value:5689879898]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china]
[row:zhangsan_1495527850824],[family:account],[qualifier:name],[value:zhangsan]
[row:zhangsan_1495527850951],[family:address],[qualifier:province],[value:guangdong]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100]
[row:zhangsan_1495527851080],[family:info],[qualifier:sex],[value:男]
[row:zhangsan_1495527851095],[family:userid],[qualifier:id],[value:001]
该过滤器仅仅返回每一行中的第一个cell的值,可以用于高效的执行行数统计操作。
构造函数:
public FirstKeyOnlyFilter()
代码:
Table table = connection.getTable(TableName.valueOf("user"));
FirstKeyOnlyFilter fkof = new FirstKeyOnlyFilter();
Scan scan = new Scan();
scan.setFilter(fkof);
ResultScanner rs = table.getScanner(scan);
结果:
[row:lisi_1495527849910],[family:account],[qualifier:idcard],[value:42963319861234561230],[time:1495556647872]
[row:lisi_1495527850081],[family:account],[qualifier:name],[value:lisi],[time:1495556647984]
[row:lisi_1495527850111],[family:account],[qualifier:password],[value:123451231236],[time:1495556648013]
[row:lisi_1495527850114],[family:address],[qualifier:city],[value:黄埔],[time:1495556648017]
[row:lisi_1495527850136],[family:address],[qualifier:province],[value:shanghai],[time:1495556648041]
[row:lisi_1495527850144],[family:info],[qualifier:age],[value:21],[time:1495556648045]
[row:lisi_1495527850154],[family:info],[qualifier:sex],[value:女],[time:1495556648056]
[row:lisi_1495527850159],[family:userid],[qualifier:id],[value:002],[time:1495556648060]
[row:wangwu_1495595824517],[family:userid],[qualifier:id],[value:009],[time:1495624624131]
[row:zhangsan_1495527850759],[family:account],[qualifier:idcard],[value:9897645464646],[time:1495556648664]
[row:zhangsan_1495527850824],[family:account],[qualifier:country],[value:china],[time:1495636452285]
[row:zhangsan_1495527850951],[family:address],[qualifier:province],[value:guangdong],[time:1495556648855]
[row:zhangsan_1495527850975],[family:info],[qualifier:age],[value:100],[time:1495556648878]
[row:zhangsan_1495527851080],[family:info],[qualifier:sex],[value:男],[time:1495556648983]
[row:zhangsan_1495527851095],[family:userid],[qualifier:id],[value:001],[time:1495556648996]
看着返回数据还没明白,仅仅返回每一行中的第一个cell的值,可以用于高效的执行行数统计操作。