python数据分析之pandas里的Series

1 Series

线性的数据结构, series是一个一维数组

Pandas 会默然用0到n-1来作为series的index, 但也可以自己指定index( 可以把index理解为dict里面的key )

1.1创造一个serise数据

import pandas as pd
import numpy as np

s = pd.Series([9, 'zheng', 'beijing', 128])

print(s)
  • 打印


0          9
1      zheng
2    beijing
3        128
dtype: object
  • 访问其中某个数据


print(s[1:2])

# 打印
1    zheng
dtype: object

1.2 指定index

import pandas as pd
import numpy as np

s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])

print(s)
  • 打印


1          9
2      zheng
3    beijing
e        128
f        usa
g        990
dtype: object
  • 根据索引找出值


print(s['f'])    # usa

1.3 用dictionary构造一个series


import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "car": None}

sa = pd.Series(s, name="age")

print(sa)
  • 打印


car      NaN
jack    19.0
mary    18.0
ton     20.0
Name: age, dtype: float64
  • 检测类型


print(type(sa))    # 

1.4 用numpy ndarray构造一个Series

  • 生成一个随机数

    
    import pandas as pd
    import numpy as np
    
    num_abc = pd.Series(np.random.randn(5), index=list('abcde'))
    num = pd.Series(np.random.randn(5))
    
    print(num)
    print(num_abc)
    
    # 打印
    0   -0.102860
    1   -1.138242
    2    1.408063
    3   -0.893559
    4    1.378845
    dtype: float64
    a   -0.658398
    b    1.568236
    c    0.535451
    d    0.103117
    e   -1.556231
    dtype: float64

1.5 选择数据


import pandas as pd
import numpy as np

s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])

print(s[1:3])  # 选择第1到3个, 包左不包右 zheng beijing
print(s[[1,3]])  # 选择第1个和第3个, zheng 128
print(s[:-1]) # 选择第1个到倒数第1个, 9 zheng beijing 128 usa

1.6 操作数据


import pandas as pd
import numpy as np

s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])

sum = s[1:3] + s[1:3]
sum1 = s[1:4] + s[1:4]
sum2 = s[1:3] + s[1:4]
sum3 = s[:3] + s[1:]

print(sum)
print(sum1)
print(sum2)
print(sum3)
  • 打印


2        zhengzheng
3    beijingbeijing
dtype: object
2        zhengzheng
3    beijingbeijing
e               256
dtype: object
2        zhengzheng
3    beijingbeijing
e               NaN
dtype: object
1               NaN
2        zhengzheng
3    beijingbeijing
e               NaN
f               NaN
g               NaN
dtype: object

1.7 查找

  • 是否存在


USA in s # true

  • 范围查找
import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(sa[sa>19])
python数据分析之pandas里的Series_第1张图片

  • 中位数
import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(sa.median())  # 20
  • 判断是否大于中位数
import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(sa>sa.median())
python数据分析之pandas里的Series_第2张图片

  • 找出大于中位数的数
import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(sa[sa > sa.median()])
python数据分析之pandas里的Series_第3张图片

  • 中位数
import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

more_than_midian = sa>sa.median()

print(more_than_midian)

print('---------------------')

print(sa[more_than_midian])
python数据分析之pandas里的Series_第4张图片


1.8 Series赋值

import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(s)

print('----------------')

sa['ton'] = 99

print(sa)
python数据分析之pandas里的Series_第5张图片


1.9 满足条件的统一赋值

import pandas as pd
import numpy as np

s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}

sa = pd.Series(s, name="age")

print(s) # 打印原字典

print('---------------------')   # 分割线

sa[sa>19] = 88 # 将所有大于19的同一改为88

print(sa) # 打印更改之后的数据

print('---------------------')   # 分割线

print(sa / 2) # 将所有数据除以2
python数据分析之pandas里的Series_第6张图片


















你可能感兴趣的:(python数据分析之pandas里的Series)