- 金融租赁系统的创新发展与市场竞争力提升探讨
红点租赁系统开发
其他
内容概要随着经济的快速发展,金融租赁系统逐渐成为金融市场中不可或缺的一环。它不仅提供了灵活的资金解决方案,还促进了企业的资本结构优化与资源配置效率。因此,了解该系统的市场背景与发展现状至关重要。在现今环境下,新兴技术如人工智能、大数据和区块链等正加速推动金融租赁的创新。通过这些技术,不仅可以优化业务流程,提升运营效率,还可以增强风险管理能力。例如,利用数据分析可以实时监测租赁资产的风险,从而采取相
- csv转为utf8编码_中文的csv文件的编码改成utf8的方法
John Sheppard
csv转为utf8编码
直奔主题:把包含中文的csv文件的编码改成utf-8的方法:啰嗦几句:在用pandas读取hive导出的csv文件时,经常会遇到类似UnicodeDecodeError:'gbk'codeccan'tdecodebyte0xa3inposition12这样的问题,这种问题是因为导出的csv文件包含中文,且这些中文的编码不是gbk,直接用excel打开这些文件还会出现乱码,但用记事本打开这些csv则
- 企业信息化整体架构图
weixin_33937913
系统架构
今天无意间发现一张企业信息化的图,放在这里以后参考。CollaboraticeCommerce转载于:https://www.cnblogs.com/Masterpiece/archive/2004/12/29/83696.html
- 分块查找算法
1haooo
算法java算法开发语言数据结构
分块的原则前一块的最大数据,小于后一窥啊中所有的数据(块内无序,块间有序)块数数量一般等于数字的个数开根号。比如:16个数字一般分为4块左右。publicclassblockSearch{publicstaticvoidmain(String[]args){int[]arr={16,5,9,12,21,18,32,23,37,26,45,34,50,48,61,52,73,66};//共18个元素
- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- dcm4che
jamie_zhengmin
dcm4chearchivejboss工具服务器
dcm4che工具包DICOMtoolkitDICOM工具包dcm4chee归档服务器器IHE影像管理器和影像归档执行器(dcm4jbossarchive影像归档器,影像扫描检查和报告的管理)dcm4che2重架构dcm4che的重架构实现
- 将Hive数据导出为CSV和Excel格式的方法
翠绿探寻
hiveexcelhadoop编程
将Hive数据导出为CSV和Excel格式的方法在Hive中存储和处理大规模数据是一项常见的任务。有时候,我们需要将Hive中的数据导出为CSV或Excel格式,以便进行进一步的分析或与其他工具进行集成。本文将介绍如何使用编程的方式将Hive数据导出为CSV和Excel格式,并提供相应的源代码。Hive数据导出为CSV格式要将Hive数据导出为CSV格式,我们可以使用Hive的内置函数INSERT
- MongoDB数据库使用及常见问题
微笑的曙光(StevenLi)
数据库数据库mongodb
MongoDB数据库之所以备受青睐,关键在于其独特的优势满足了现代应用的需求。它采用文档型存储,数据结构灵活,无需事先定义表结构,非常适合处理复杂且多变的数据。MongoDB具备高性能和可扩展性,能够轻松应对大数据量和高并发的访问,通过分片技术实现水平扩展,确保系统稳定运行。同时,它提供了强大的数据一致性和可靠性保障,支持多种复制和故障转移机制,确保数据的高可用性和持久性。此外,MongoDB拥有
- 智慧社区2.0
陈陈爱java
java
项目亮点1.技术架构层面✅多数据源整合(MySQL+Redis+HDFS+OSS)核心亮点:不仅仅是单一数据库,而是根据数据特性使用MySQL(结构化数据)+Redis(缓存)+HDFS(大数据存储)+OSS(对象存储),提高了系统的数据存储效率和查询速度。面试时可以强调:Redis作为缓存,加速社区热点数据访问,减少MySQL压力。HDFS存储海量日志和AI任务数据,支持后续分析。OSS解决图片
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 智能汽车:驶向未来的革命
智能设备
一、引言汽车,作为现代文明的标志,正经历着一场前所未有的变革。人工智能、大数据、云计算等技术的飞速发展,正推动着汽车从单纯的交通工具向智能移动空间转变。智能汽车,作为这场变革的主角,正悄然改变着我们的出行方式和生活方式。二、智能汽车的定义与发展现状智能汽车,是指搭载先进传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- 最新计算机专业毕设论文选题大全基于BeautifulSoup的毕业设计详细题目100套优质毕设项目分享(源码+论文)✅
会写代码的羊
毕设选题课程设计beautifulsoup毕业设计毕业设计题目毕设题目python网络爬虫
文章目录前言最新毕设选题(建议收藏起来)基于BeautifulSoup的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 智能租赁系统助力数字化转型提升管理效率与服务质量
红点租赁系统开发
其他
内容概要在当今快速发展的商业环境中,智能租赁系统正如一位得力助手,帮助企业以数字化的方式提升管理效率与服务质量。想象一下,传统的租赁管理就像是一场需要精确时间安排的舞蹈,而智能租赁系统则提供了高科技的音响设备,让整个表演流畅无比。通过先进的数字技术,比如云计算和大数据分析,这些系统能够优化资源配置,让企业的每一分钱都花得物有所值。更妙的是,智能租赁系统不仅高效处理日常事务,还能提供精确的数据分析,
- 金融租赁系统智慧风控实践探索
红点租赁系统开发
其他
内容概要当传统金融租赁还在和纸质合同较劲时,兴业金融租赁系统已经玩起了"变形金刚式"的智慧风控。这套系统就像给资产装上了GPS定位器+心电图监测仪,通过物联网传感器实时捕捉设备运行数据,配合卫星定位追踪车辆轨迹,再让大数据分析引擎消化海量场景信息——从工地的混凝土搅拌频率到物流车队的急刹车次数,全被转化成可量化的风险坐标。技术手段业务指标提升应用场景案例物联网传感器异常响应速度提升70%工程机械油
- 07-单链表-单链表基本操作
哆啦A梦阳
2025算法机试算法数据结构
题目来源826.单链表-AcWing题库思路详见代码,主要思想就是用数组来模拟链表的创建。数组其实跟静态链表等价,由于动态链表动态new对于大数据太过于耗时,因此采用数组的方式。那数组如何起到链表的效果?用下标来索引。代码#includeusingnamespacestd;constintN=100010;inthead,e[N],ne[N],idx;//初始化voidinit(){head=-1
- debian11安装MongoDB
韩搏
Linux基础mongodb数据库
debian11bit64安装MongoDB6.0安装必要的包sudoaptinstallgnupgcurl导入MongoDB公钥curl-fsSLhttps://www.mongodb.org/static/pgp/server-6.0.asc|sudogpg--dearmor-o/usr/share/keyrings/mongodb-archive-keyring.gpg创建MongoDB源列
- linux 安装anaconda与jupyter notebook配置
土豆土豆,我是洋芋
python
一、anaconda安装在官网或清华镜像下载anaconda在载前看一下自己的系统版本,下载对应的anaconda版本。在系统中输入:cat/proc/version,如下图所示##下载地址1)官网:https://www.anaconda.com/distribution/2)清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/安
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- KVM 内核优化全攻略:全方位释放服务器性能
TechStack 创行者
KVMLinux服务器运维KVM
KVM内核优化全攻略:全方位释放服务器性能在云计算、大数据、人工智能等前沿技术蓬勃发展的当下,服务器性能面临着前所未有的挑战。KVM(Kernel-basedVirtualMachine)作为开源虚拟化解决方案,凭借高效稳定的特性,广泛应用于企业数据中心。要充分发挥KVM性能优势,对其内核进行全面优化势在必行。本文将为你详细介绍一套涵盖通用优化及其他关键优化点的完整KVM内核优化方案,并结合实际案
- Hive 与 SparkSQL 的语法差异及性能对比
自然术算
Hivehivehadoop大数据spark
在大数据处理领域,Hive和SparkSQL都是极为重要的工具,它们为大规模数据的存储、查询和分析提供了高效的解决方案。虽然二者都致力于处理结构化数据,并且都采用了类似SQL的语法来方便用户进行操作,但在实际使用中,它们在语法细节和性能表现上存在诸多差异。了解这些差异,对于开发者根据具体业务场景选择合适的工具至关重要。语法差异数据定义语言(DDL)表创建语法Hive:在Hive中创建表时,需要详细
- Oracle V$SESSION详解
雨的遐想
oracle数据库
V$SESSION是SYS用户下面对于SYS.V_$SESSION视图的同义词。在本视图中,每一个连接到数据库实例中的session都拥有一条记录。包括用户session及后台进程如DBWR,LGWR,arcchiver等等。1.V$SESSION中的常用列V$SESSION是基础信息视图,用于找寻用户SID或SADDR,及检查用户的动态:(1)SQL_HASH_VALUE,SQL_ADDRESS
- 【实操回顾】基于Apache SeaTunnel从MySQL同步到PostgreSQL——Demo方舟计划
SeaTunnel
apachemysqlpostgresql
文章作者:马全才奥克斯集团大数据工程师编辑整理:国电南自赵鸿辉白鲸开源曾辉本文详细演示了如何通过ApacheSeaTunnel2.3.9实现**MySQL**到PostgreSQL的全量数据同步。非常感谢马全才老师花费业余时间为大家演示制作的Demo,也欢迎更多朋友贡献自己熟悉的同步场景,详细请参考社区Demo方舟活动:https://mp.weixin.qq.com/s/5gpiZZ0-8a4I
- Flink 初体验:从 Hello World 到实时数据流处理
小诸葛IT课堂
flink大数据
在大数据处理领域,ApacheFlink以其卓越的流批一体化处理能力脱颖而出,成为众多企业构建实时数据应用的首选框架。本文将带领你迈出Flink学习的第一步,从基础概念入手,逐步引导你编写并运行第一个Flink程序——经典的WordCount,让你亲身感受Flink在实时数据流处理方面的强大魅力。一、Flink基础概念速览1.1什么是FlinkFlink是一个分布式流批一体化开源平台,旨在对无界和
- 大数据开发之Kubernetes篇----安装部署Kubernetes&dashboard
豆豆总
kubernetes
Kubernetes简介由于公司有需要,需要将外后的服务外加Tensorflow模型部署加训练全部集成到k8s上,所以特意记录下这次简单部署的过程。k8s安装部署首先,我们在部署任何大型的组件前都必须要做的事情就是关闭防火墙和设置hostname了vi/etc/hostsk8s001xxx.xxx.xxx.xxk8s002xxx.xxx.xxx.xx...systemctlstopfirewall
- 毕设分享 大数据B站数据分析可视化系统
bee_dc
毕业设计毕设大数据
文章目录0前言1项目运行效果2设计原理数据处理方案可视化呈现方案综合得分计算指标综合得分漏斗图游客画像完成度三连排行榜点赞、投币、收藏与白嫖的比例分析3最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天
- 毕业设计项目 大数据B站数据分析可视化系统
bee_dc
毕业设计毕设大数据
文章目录0前言1项目运行效果2设计原理数据处理方案可视化呈现方案综合得分计算指标综合得分漏斗图游客画像完成度三连排行榜点赞、投币、收藏与白嫖的比例分析3最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天
- python数据可视化玩转Matplotlib subplot子图操作,四个子图(一包四),三个子图,子图拉伸_python subplot
2401_83817843
程序员python信息可视化matplotlib
大锤爱编程的博客_CSDN博客-大数据,Go,数据分析领域博主Matplotlib是一个流行的Python可视化库,它提供了许多功能来创建各种类型的图表。其中一个功能是子图,它允许您在单个图表中绘制多个图。一、创建子图要创建子图,请使用plt.subplots()函数。该函数接受三个参数:行数、列数和子图编号。以下是一个简单的示例:importmatplotlib.pyplotaspltfig,a
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在