Android应用通常使用PF_UNIX、PF_INET、PF_NETLINK
等不同domain的socket来进行本地IPC或者远程网络通信,这些暴露的socket代表了潜在的本地或远程攻击面,历史上也出现过不少利用socket进行拒绝服务、root提权或者远程命令执行的案例。特别是PF_INET
类型的网络socket,可以通过网络与Android应用通信,其原本用于linux环境下开放网络服务,由于缺乏对网络调用者身份或者本地调用者pid、permission等细粒度的安全检查机制,在实现不当的情况下,可以突破Android的沙箱限制,以被攻击应用的权限执行命令,通常出现比较严重的漏洞。作为Android安全研究的新手,笔者带着传统服务器渗透寻找开放socket端口的思路,竟然也刷了不少漏洞,下面就对这种漏洞的发现、案例及影响进行归纳。
简单地利用命令netstat就可以发现Android开放了许多socket端口,如图。但这些开放端口本后的应用却不得而知。
此时可以通过三步定位法进行寻找(感谢@瘦蛟舞的帖子),支持非root手机。
第一步,利用netstat寻找感兴趣的开放socket端口,如图中的15555。
第二步,将端口转换为十六进制值,查看位于/proc/net/目录下对应的socket套接字状态文件,在其中找到使用该socket的应用的uid。如15555的十六进制表示为1cc3,协议类型为tcp6,那么查看/proc/net/tcp6文件。
注意上面的10115,就是使用该socket的应用的uid。通过这个uid可以得知应用的用户名为u0_a115。
第三步,根据用户名就可以找到应用了
至此,我们就知道开放15555端口的应用为com.qiyi.video,尽管我们还不能分辨出开放该端口的准确进程,但仍然为进一步的漏洞挖掘打下基础。
写一个简单的脚本来自动化的完成此项工作.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
import
subprocess,re
def
toHexPort(port):
hexport
=
str
(
hex
(
int
(port)))
return
hexport.strip(
'0x'
).upper()
def
finduid(protocol, entry):
if
(protocol
=
=
'tcp'
or
protocol
=
=
'tcp6'
):
uid
=
entry.split()[
-
10
]
else
:
# udp or udp6
uid
=
entry.split()[
-
6
]
uid
=
int
(uid)
if
(uid >
10000
):
# just for non-system app
return
'u0_a'
+
str
(uid
-
10000
)
else
:
return
-
1
def
main():
netstat_cmd
=
"adb shell netstat | grep -Ei 'listen|udp*'"
#netstat_cmd = "adb shell netstat "
grep_cmd
=
"adb shell grep"
proc_net
=
"/proc/net/"
# step 1, find interesting port
orig_output
=
subprocess.check_output(netstat_cmd, shell
=
True
)
list_line
=
orig_output.split(
'\r\n'
)
apps
=
[]
strip_listline
=
[]
pattern
=
re.
compile
(
"^Proto"
)
# omit the first line
for
line
in
list_line:
if
(line !
=
'')
and
(pattern.match(line)
=
=
None
):
# step 2, find uid in /proc/net/[protocol] based on port
socket_entry
=
line.split()
protocol
=
socket_entry[
0
]
port
=
socket_entry[
3
].split(
':'
)[
-
1
]
grep_appid
=
grep_cmd
+
' '
+
toHexPort(port)
+
' '
+
proc_net
+
protocol
net_entry
=
subprocess.check_output(grep_appid, shell
=
True
)
uid
=
finduid(protocol, net_entry)
# step 3, find app username based on uid
if
(uid
=
=
-
1
):
continue
applist
=
subprocess.check_output(
'adb shell ps | grep '
+
uid, shell
=
True
).split()
app
=
applist[
8
]
apps.append(app)
strip_listline.append(line)
itapp
=
iter
(apps)
itline
=
iter
(strip_listline)
# last, add app in orig_output of sockets
print
(
"Package Proto Recv-Q Send-Q Local Address Foreign Address State\r\n"
)
try
:
while
True
:
print
itapp.
next
()
+
' '
+
itline.
next
()
except
StopIteration:
pass
if
__name__
=
=
'__main__'
:
main()
|
运行结果如下
除了PF_INET套接字外,PF_UNIX、PF_NETLINK套接字的状态文件分别位于/proc/net/unix和/proc/net/netlink。
当然,如果手机已root,可直接使用busybox安装目录下带p参数的netstat命令,可以显示pid和不完整的program name。
得知某个应用开放某个端口以后,接下就可以在该应用的逆向代码中搜索端口号(通常是端口号的16进制表示),重点关注ServerSocket(tcp)、DatagramSocket(udp)等类,定位到关键代码,进一步探索潜在的攻击面,下面列举一些漏洞实例。
WooYun-2015-94537:某service打开udp的65502端口监听,接收特定的命令字后可返回手机的敏感信息,包括手机助手远程管理手机的SecretKey,进而未授权的攻击者可通过网络完全管理手机。
CVE-2014-8757, LG On-Screen Phone预装App认证绕过漏洞。
这类漏洞比较常见,通常通过开放socket端口传入启动android应用组件的intent,然后以被攻击应用的权限执行启动activity、发送广播等操作。由于通过socket传入的intent,无法对发送者的身份和权限进行细粒度检查,绕过了Android提供的对应用组件的权限保护,能够启动未导出的和受权限保护的应用组件,对安全造成影响。
如果监听的端口是在本地,那么可能造成本地命令执行和权限提升,而如果监听的端口是任意地址,则可能造成比较严重的远程命令执行。
用前面端口应用定位的方法,发现某流行应用实现了一个小型的HTTP Server,监听本地的9527端口,简单搜索分析即可发现向该端口发送如下形式的HTTP请求时可执行命令。
http://127.0.0.1:9527/si?cmp=_ &data= &act=
通过这个简单的HTTP请求,恶意程序就可以传入intent对象的包名、组件名、url和action,接收HTTP请求后执行命令的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
...
if
(v3.hasNext()) {
Object v6 = v3.next();
if
(
"act"
.equals(v6)) {
v4.setAction(v10.b.get(v6));
}
if
(
"cmp"
.equals(v6)) {
String[] v9 = v10.b.get(v6).split(
"_"
);
if
(v9 ==
null
) {
goto
label_39;
}
if
(v9.length !=
2
) {
goto
label_39;
}
v4.setComponent(
new
ComponentName(v9[
0
], v9[
1
]));
}
label_39:
if
(
"data"
.equals(v6)) {
v4.setData(Uri.parse(v10.b.get(v6)));
}
if
(!
"callback"
.equals(v6)) {
goto
label_13;
}
Object v1_1 = v10.b.get(v6);
goto
label_13;
}
if
((TextUtils.isEmpty(v4.getAction())) && v4.getComponent() ==
null
&& v4.getData() ==
null
) {
if
(TextUtils.isEmpty(((CharSequence)v1))) {
return
"{\"result\":-20000}"
;
}
return
this
.a(v1,
"{\"result\":-20000}"
);
}
List v0 =
this
.a.getPackageManager().queryIntentActivities(v4,
0
);
if
(v0.size() ==
0
) {
if
(TextUtils.isEmpty(((CharSequence)v1))) {
return
"{\"result\":-10000}"
;
}
return
this
.a(v1,
"{\"result\":-10000}"
);
}
try
{
this
.a.startActivity(v4);
}
...
|
最终通过HTTP请求设置的Intent对象,传入了startActivity方法,由于需要用户干预,危害并不大。但当packagename指定为该应用自身,componentname指定为该应用的activity时,可以启动该应用的任意activity,包括受保护的未导出activity,从而对安全造成影响。例如,通过HTTP请求,逐一启动若干未导出的activity,可以发现拒绝服务漏洞、对安全有影响的登录界面和有一个可以该应用权限执行任意命令的GUI shell。
远程命令执行:
趋势科技曾经发现过美团客户端漏洞,可以通过TCP的9527端口传入intent data,进而启动activity,见参考文献[1]
.
远程强制webview访问恶意链接
定位到某流行应用实现了一个小型的HTTP Server,在tcp的6677端口监听任意地址,当HTTP请求满足一定条件时可以返回敏感信息,并根据请求消息执行一系列动作。对于该HTTP请求,仅有的防御措施是通过referer白名单的方式判断HTTP请求的来源。在正确设置referer,发送如下HTTP GET请求后
http://ip:6677/command?param1=value1&...¶mn=valuen
可获取手机的敏感信息和实现命令执行。其中command为getpackageinfo、androidamap、geolocation中的其一,见如下代码片段。
(1)当command为geolocation时,可返回安装该应用手机地理位置信息;
(2)当command为getpackageinfo时,默认返回该应用自身的版本信息。此时若指定参数param1为packagename,即请求http://ip:6677/getpackageinfo?packagename=xxx时(xxx为软件包名)可返回手机上安装的xxx所指定的任意软件包版本信息。若xxx为android,可返回android系统版本信息;
(3)当command为androidamap时,设置Intent并将其广播出去,查看对应的OnReceive方法
发现需要指定参数param1为action,即请求
http://ip:6677/androidamap?action=yyy¶m2=value2&...¶mn=valuen
时,OnReceive方法取出前面广播intent对象的extra,新建一个intent对象,设置intent uri为
androidamap://yyy?sourceApplication=web¶m2=value2&...¶mn=valuen
并以隐式intent的形式启动注册这种uri scheme的activiy。
进一步搜索发现如下代码:
1
2
3
4
5
6
7
|
Uri v0_2 = Uri.parse(
"androidamap://openFeature?featureName=OpenURL&sourceApplication=banner&urlType=0&contentType=autonavi&url="
+
this
.a.m.privilegeLink);
Intent v1 =
new
Intent(MovieDetailHeaderView.c(
this
.a).getApplicationContext(),
NewMapActivity.
class
);
v1.setData(v0_2);
v1.setFlags(
268435456
);
MovieDetailHeaderView.c(
this
.a).startActivity(v1);
|
表明可以通过远程HTTP GET请求如下地址
http://ip:6677/androidamap?action=openFeature&featureName=OpenURL&sourceApplication=banner&urlType=0&contentType=autonavi&url=evilsite
操纵安装该app的手机继承WebView的Activity访问evilsite,而且这里存在WebView的漏洞,利用方式包括
(1). 窃取私有目录下的敏感文件:远程攻击者或者本地恶意app可以令WebView加载file://域的恶意脚本文件,按照恶意脚本的请求,窃取该应用私有目录下的敏感文件,突破android沙箱限制;
(2). WebView远程命令执行:存在可被网页中js操纵的接口jsinterface。由于该流行应用针对的SDK版本较低(android:minSdkVersion="8"
),在Android 4.4.2以下的手机,均可使用该接口,通过js注入该应用进程执行命令。
对于Android app开放socket端口漏洞的远程利用场景,一般认为Android客户端都在内网,其利用主要还是在非安全的公共WiFi环境,通过对漏洞特征扫描即可利用。但在传统认为安全的移动互联网环境,笔者发现仍然可以扫描到其他开放端口的终端,因此也可以利用这种漏洞。
叙述之前,我们先对典型的移动通信网络架构进行简单的科普,一般教科书上的3G网络架构(WCDMA)如图。
包括以下组成部分:
UE: 用户终端设备,就是手机,为用户提供电路域和分组域内的各种业务功能。
UTRAN: 陆地无线接入网,分为基站(Node B)和无线网络控制器(RNC)两部分。
CN: 核心网络,负责与其他网络的连接和对UE 的通信和管理。主要功能实体包括:
(1) MSC/VLR:提供CS(电路交换)域的呼叫控制、移动性管理、鉴权和加密等功能;
(2) GMSC:网关移动交换中心,充当移动网和固定网之间的移动关口局,承担路由分析、网间接续、网间结算等重要功能;
(3) SGSN:GPRS服务支持节点,提供PS(分组交换)域的路由转发、移动性管理、会话管理、鉴权和加密等功能;
(4) GGSN:网关GPRS支持节点,提供数据包在WCDMA 移动网和外部数据网之间的路由和封装,GGSN就好象是可寻址WCDMA移动网络中所有用户IP 的路由器,需要同外部网络交换路由信息。
(5) HLR:归属位置寄存器,提供用户的签约信息存放、新业务支持、增强的鉴权等功能。
External Networks:外部网络,包括ISDN和PSTN等电路交换网络,以及Internet等分组交换网络。
简而言之,移动通信网络无非是大型的“局域网“,它们通过网关路由器(SGSN和GGSN)连上了Internet,进入到了互联网的世界。但是在某些移动通信网络的内部,不同的UE是可以互访的。以前面某应用开放6677端口为例,我们可以做一个简单的实验进行证明。
使用联通3G网络,查看当前IP地址。
在相邻C段进行扫描,扫描到开放端口的手机
nmap -sT --open -p6677 10.160.112.0/24
发现如下结果
这证明在移动网络中,不同的UE可以互访。因此如果开放上述socket端口的app存在漏洞,在移动网络中也是可以利用的。
对于客户端的远程漏洞利用,从攻击者的角度来看,通常更容易使用“受”的方法,即通过欺骗、劫持或社工的方法来让客户端访问我的攻击载荷。然而,从笔者发现的漏洞案例来看,许多Android应用不正确地使用网络socket端口传入命令进行跨进程通信,而且对于本地应用环境,网络socket也先天缺乏细粒度的认证授权机制,因此把Android客户端当做服务器,使用“攻”的方法,主动向开放端口发送攻击载荷也是可行的。这种漏洞一旦存在,轻则本地提权,重则为远程利用的高危漏洞,3G移动网络允许UE互访更是加剧了这种风险。
此外,除PF_INET外,PF_UNIX、PF_NETLINK域的套接字也是值得关注的本地攻击面。
参考文献:[1] http://blog.trendmicro.com/trendlabs-security-intelligence/open-socket-poses-risks-to-android-security-model