- spark学习资料
Liam_ml
AdvancedApacheSpark-SameerFarooqui(Databricks)”(https://www.youtube.com/watch?v=7ooZ4S7Ay6Y)将几天的课程浓缩到了一天,质量非常好。Spark的文档:Overview-Spark1.6.1Documentation,这里面包含项目介绍,代码示例,配置,部署,调优等等,入门使用足够了。Sparkrepo:apa
- Hudi学习 6:Hudi使用
hzp666
Hudihudi数据湖湖仓一体湖仓融合实时数仓
准备工作:1.安装hdfshttps://mp.csdn.net/mp_blog/creation/editor/1096891432.安装sparkspark学习4:spark安装_hzp666的博客-CSDN博客3.安装ScalaHudi学习6:安装和基本操作_hzp666的博客-CSDN博客spark-shell写入和读取hudi2.模拟数据插入hudi使用spark写入数据
- spark学习4:spark安装
hzp666
sparkspark大数据
1.下载spark安装包2.配置环境1.cd/bigdata/spark-3.0.1-bin-hadoop3.2/conf/2.4.添加动态库在hadoop-3.2.2/bin目录下添加hadoop.dll和winutils.exe文件,可以从https://github.com/cdarlint/winutils和https://github.com/steveloughran/winutils
- pyspark学习-自定义udf
heiqizero
sparkspark
#demo1:frompyspark.sqlimportSparkSession,Rowif__name__=='__main__':spark=SparkSession.builder.getOrCreate()num=spark.sparkContext.parallelize([1,2,3,4,5]).map(lambdax:Row(num=x))numDF=spark.createData
- pyspark学习-spark.sql.functions normal函数
heiqizero
sparkspark
1.col#col(col)"""作用:返回一个基于已给列名的列信息场景:类似于dataframe格式中提取data["id"],能够进行计算参数: col:列名 返回: column:返回一个基于已给列名的列信息"""spark=SparkSession.builder.getOrCreate()data=spark.range(3)data.select(col("id").alias(
- [Spark] 如何设置Spark资源
LZhan
转自1.公众号[Spark学习技巧]如何设置Spark资源2.Spark性能优化篇一:资源调优Spark和YARN管理的两个主要资源:CPU和内存应用程序中每个SparkExecutor都具有相同的固定数量的核心和相同的固定堆大小。使用--executor-cores命令行参数或者通过设置spark.executor.cores属性指定核心数;使用--executor-memory命令行参数或者通
- pyspark学习-spark.sql.functions 聚合函数
heiqizero
sparkspark
https://spark.apache.org/docs/3.4.1/api/python/reference/pyspark.sql/functions.html1.approx_count_distinct和count_distinct#approx_count_distinct(col:ColumnOrName,rsd:Optionnal[float]=None)"""作用:返回列col的
- spark学习笔记:弹性分布式数据集RDD(Resilient Distributed Dataset)
黄道婆
bigdata
弹性分布式数据集RDD1.RDD概述1.1什么是RDDRDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度。D
- pyspark学习_dataframe常用操作_02
heiqizero
sparkspark
#回顾01常用操作frompysparkimportSparkSession,DataFramespark=SparkSession.builder.getOrCreate()peopleDF=spark.read.json("people.json")peopleDF.printSchema()#显示DataFrame的模式信息peopleDF.show()#显示DataFrame的数据信息pe
- Spark学习笔记五:Spark资源调度和任务调度
开发者连小超
一、StageSpark任务会根据RDD之间的依赖关系,形成一个DAG有向无环图,DAG会提交给DAGScheduler,DAGScheduler会把DAG划分相互依赖的多个stage,划分stage的依据就是RDD之间的宽窄依赖。遇到宽依赖就划分stage,每个stage包含一个或多个task任务。然后将这些task以taskSet的形式提交给TaskScheduler运行。stage切割规则切
- pyspark学习_wordcount
heiqizero
sparksparkpython
#统计文件中每个字母出现次数#第一版rdd文件行类型:Aaron,OperatingSystem,100frompysparkimportSparkConf,SparkContextconf=SparkConf().setAppName("RddwordCount").setMaster("local[*]")sc=SparkContext(conf=conf)lines=sc.textFile(
- pyspark学习_RDD转为DataFrame
heiqizero
sparksparkpython
#方法1:反射机制推断RDD模式people.txtTom12Jack13Janny14frompyspark.sqlimportSparkSession,Rowspark=SparkSession.builder.getOrCreate()lines=spark.sparkContext.textFile("people.txt")people=lines.map(lambdax:x.split
- pyspark学习-RDD转换和动作
heiqizero
sparksparkpython
#RDD创建#1.parallelize方法:创建RDD,参数为list,返回RDDsc.parallelize(param:list)#demosc.parallelize(['tom','jack','black'])#2.textFile方法:读取文件,创建RDD,参数为hdfs文件地址或者本地文件地址,返回RDDsc.textFile(param:filepath)#demosc.text
- pyspark学习_dataframe常用操作_01
heiqizero
sparksparkpython
1.创建DataFrame本文使用DataFrame通过读取json文件获取数据,代码如下:frompyspark.sqlimportSparkSessionspark=SparkSeesion.builder.getOrCreate()#创建sparkSessionpeopleDF=spark.read.format("json").load("people.json")"""spark支持读取
- Spark学习(8)-SparkSQL的运行流程,Spark On Hive
技术闲聊DD
大数据hivespark学习
1.SparkSQL的运行流程1.1SparkRDD的执行流程回顾1.2SparkSQL的自动优化RDD的运行会完全按照开发者的代码执行,如果开发者水平有限,RDD的执行效率也会受到影响。而SparkSQL会对写完的代码,执行“自动优化”,以提升代码运行效率,避免开发者水平影响到代码执行效率。这是因为:RDD:内含数据类型不限格式和结构。DataFrame:100%是二维表结构,可以被针对Spar
- Apriori
BluthLeee
Apriori算法原理总结-刘建平FPTree算法原理总结-刘建平PrefixSpan算法原理总结-刘建平用Spark学习FPTree算法和PrefixSpan算法-刘建平
- Spark学习之Spark Core
John Stones
sparkbigdatascala
什么是Spark?(官网:http://spark.apache.org)https://www.cnblogs.com/lq0310/p/9841647.html
- 【大数据】Spark学习笔记
pass night
学习笔记javaspark大数据sql
初识SparkSpark和HadoopHadoopSpark起源时间20052009起源地MapReduceUniversityofCaliforniaBerkeley数据处理引擎BatchBatch编程模型MapReduceResilientdistributedDatesets内存管理DiskBasedJVMManaged延迟高中吞吐量中高优化机制手动手动APILowlevelhighleve
- spark学习之旅(2)之之RDD常用方法
浩哥的技术博客
sparkspark大数据
RDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。这里的弹性指的是RDD可以根据当前情况自动进行内存和硬盘存储的转换简单点讲就是spark中对数据的一个封装,把数据封装进对象,容易操作在spark中所有的计算都是围绕着RDD操作的,每个RDD都被分为多个分区,这些分区运行在集群
- spark学习一-------------------Spark算子最详细介绍
创作者mateo
spark大数据专栏spark学习ajax
Spark学习–spark算子介绍1.基本概念spark算子:为了提供方便的数据处理和计算,spark提供了一系列的算子来进行数据处理。一般算子分为action(执行算子)算子Transformation(懒执行)算子。2.Transformation算子基本介绍简介:transformation被称为懒执行算子,如果没有action算子,则代码是不会执行的,一般分为:map算子:map算子是将r
- 2017.09.06 scala spark学习
RazorH
日记
2.scala没有静态的修饰符,但object下的成员都是静态的,若有同名的class,这其作为它的伴生类。在object中一般可以为伴生类做一些初始化等操作,如我们常常使用的valarray=Array(1,2,3)(ps:其使用了apply方法)scala里的object一般特指的是伴生对象,可以通过对象名直接调用其中的成员,类似Java中的static成员,如果不在当前作用域,需要impor
- spark学习笔记(十一)——sparkStreaming-概述/特点/构架/DStream入门程序wordcount
一个人的牛牛
spark学习sparkscala大数据
目录SparkStreamingsparkStreamingDStreamsparkStreaming特点sparkStreaming构架背压机制DStream入门SparkStreamingsparkStreamingSparkStreaming用于流式数据的处理。SparkStreaming支持的数据输入源很多:Kafka、Flume、Twitter、ZeroMQ和简单的TCP套接字等等。数据
- Spark学习——1.代表性大数据技术
楓尘林间
SparkSpark大数据学习
本篇博客是学习子雨大数据之Spark入门教程的学习笔记,仅作学习之用。1.代表性的大数据技术HadoopSparkFlinkBeam主要计算模式如图1-11.1HadoopHadoop的生态系统图如图1-2开源谷歌GFS,利用MapReduce分布式并行编程,MapReduce和HDFS是Hadoop的两大核心。HDFS分布式文件管理系统Hive数据仓库数据仓库,借助底层HDFS和HBase完成存
- Spark学习笔记一
孤独的偷学者
开发环境的搭建大数据spark
文章目录1Spark架构设计与原理思想1.1Spark初始1.2Spark架构核心1.3Spark的计算阶段1.4Spark执行流程1.4Spark核心模块2Spark运行环境2.1Local模式2.2Standalone模式2.2.1上传与解压Spark压缩包2.2.2默认配置文件的修改2.2.3启动集群2.2.4配置历史服务2.2.5配置高可用(HA)1Spark架构设计与原理思想1.1Spa
- 大数据Spark学习笔记—sparkcore
Int mian[]
大数据大数据sparkhadoopscala分布式
目录Spark概述核心模块Spark编程配置IDEA配置scala环境WordCount案例Spark-Standalone运行环境Local配置步骤集群分工解压文件修改配置启动集群配置历史服务器Spark-Yarn运行环境配置步骤配置历史服务器Windows运行环境配置步骤常用端口号Spark架构核心组件DriverExecutorMaster&WorkerApplicationMasterHa
- 20210127_spark学习笔记
yehaver
spark
一、部分理论spark:由Scala语言开发的快速、通用、可扩展的基于内存的大数据分析引擎。在mapreduce上进行了优化,但没mapreduce稳定。SparkCore是spark平台的基础通用执行引擎,所有其他功能都是基于。它在外部存储系统中提供内存计算和引用数据集。spark最基础的最核心的功能SparkSQL是SparkCore之上的一个组件,它引入了一个称为SchemaRDD的新数据抽
- 【Spark学习笔记】- 1Spark和Hadoop的区别
拉格朗日(Lagrange)
#Spark学习笔记spark学习笔记
目录标题Spark是什么SparkandHadoop首先从时间节点上来看:功能上来看:SparkorHadoopSpark是什么Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。SparkandHadoop在之前的学习中,Hadoop的MapReduce是大家广为熟知的计算框架,那为什么咱们还要学习新的计算框架Spark呢,这里就不得不提到Spark和Hadoop的关系。首先从时间
- Spark学习笔记【基础概念】
java路飞
大数据Sparkspark大数据java
文章目录前言Spark基础Spark是什么spark和hadoop区别Spark核心模块Spark运行模式Spark运行架构运行架构Executor与Core(核)并行度(Parallelism)有向无环图(DAG)spark的提交方式clientclusterSpark核心编程三大数据结构RDD什么是RDD执行原理RDDAPIRDD创建RDD转换算子Action行动算子统计操作RDD序列化RDD
- Spark学习笔记(3)——Spark运行架构
程光CS
#Spark学习笔记
本系列文章内容全部来自尚硅谷教学视频,仅作为个人的学习笔记一、运行架构Spark框架的核心是一个计算引擎,整体来说,它采用了标准master-slave的结构。如下图所示,它展示了一个Spark执行时的基本结构。图形中的Driver表示master,负责管理整个集群中的作业任务调度。图形中的Executor则是slave,负责实际执行任务。二、核心组件由上图可以看出,对于Spark框架有两个核心组
- 【Spark学习笔记】- 4运行架构&核心组件&核心概念
拉格朗日(Lagrange)
#Spark学习笔记spark学习笔记
目录标题1运行架构2核心组件2.1Driver2.2Executor2.3Master&Worker2.4ApplicationMaster3核心概念3.1Executor与Core3.2并行度(Parallelism)3.3有向无环图(DAG)4提交流程4.1YarnClient模式4.2YarnCluster模式5分布式计算模拟5.1Driver5.2Executor5.3Executor25
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分