2.scala没有静态的修饰符,但object下的成员都是静态的 ,若有同名的class,这其作为它的伴生类。在object中一般可以为伴生类做一些初始化等操作,如我们常常使用的val array=Array(1,2,3) (ps:其使用了apply方法)
scala里的object一般特指的是伴生对象, 可以通过对象名直接调用其中的成员, 类似Java中的static成员, 如果不在当前作用域,需要import。object StudentModelMain{
Scala有两种变量,val和var。val就不能再赋值了。与之对应的,var可以在它生命周期中被多次赋值。
通常Unit只用来声明函数或方法的返回值,其他场景基本是没有意义的。 相当于void
SparkContext是Spark的入口,负责连接Spark集群,创建RDD,累积量和广播量等。从本质上来说,SparkContext是Spark的对外接口,负责向调用这提供Spark的各种功能。它的作用是一个容器。SparkContext类非常简洁,大多数函数体只有几行代码。
SparkContext.scala实现了一个class SparkContext和一个object SparkContext。
Scala语言不能定义静态成员,于是就出现了单例对象 singleton object,除了用object关键字代替了class之外,单例对象的定义跟class的定义完全一致。
如果单例对象和某个类的名字是一样的,如SparkContext,那么,它就是这个类的伴生对象-companion object。类和它的伴生对象必须定义在一个源文件里。类,被成为是这个单例对象的伴生类-companion class。类和它的伴生对象可以互相访问其私有成员。
单例对象有什么意义呢?
单例对象没有类型,所以,如果只有object SparkContext,就不能创建class SparkContext对象,那么,在需要把SparkContext作为参数的函数调用就不用使用了。因此,object SparkContext的类型,是由它的伴生类 class SparkContext定义的。
可以使用类型调用单例对象的方法,也可以用类的实例变量指代单例对象,并把它传递给需要类型参数的方法。
单例对象不带参数。
单例对象不是用new关键字实例化的,所以不能传递给它实例化参数。
单例对象在第一次被访问的时候才会被实例化。
如果单例对象没有伴生类,那么它就是独立对象-standalone object,可以作为相关功能方法的工具类,或者是scala应用的入口点。
RDD、DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同。
RDD API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运行期倾向于创建大量临时对象,对GC造成压力。在现有RDD API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用 DataFrame API进行开发,可以免费地享受到这些优化效果。
分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。
上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。
对于一些“智能”数据格 式,Spark SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等 一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查询条件要求a > 200)。
此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。
对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。
DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。
DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为Spark
SQl类型,然而RDD依赖于运行时反射机制。
通过上面两点,DataSet的性能比RDD的要好很多,可以参见[3]
Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:
DataSet可以在编译时检查类型
并且是面向对象的编程接口。用wordcount举例:
//DataFrame
// Load a text file and interpret each line as a java.lang.String
val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
val result = ds
.flatMap(_.split(" ")) // Split on whitespace
.filter(_ != "") // Filter empty words
.toDF() // Convert to DataFrame to perform aggregation / sorting
.groupBy($"value") // Count number of occurences of each word
.agg(count("*") as "numOccurances")
.orderBy($"numOccurances" desc) // Show most common words first
//DataSet,完全使用scala编程,不要切换到DataFrame
val wordCount =
ds.flatMap(_.split(" "))
.filter(_ != "")
.groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
.count()
后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。
DataFrame和DataSet可以相互转化,df.as[ElementType]
这样可以把DataFrame转化为DataSet,ds.toDF()
这样可以把DataSet转化为DataFrame。
package cn.itcast.spark.sql
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}
/**
* Created by ZX on 2015/12/11.
*/
object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-2")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val personRDD = sc.textFile(args(0)).map(_.split(" "))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//注册表
personDataFrame.registerTempTable("t_person")
//执行SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 4")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
Scala => 把左边的转化为右边的
DataFrame中提供了详细的数据结构信息,从而使得SparkSQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么,
DataFrame中的数据结构信息,即为schema
还是用官网中的people.json的文件,输出schema,看看schema到底长什么样子。people.json文件的show()在上一篇文章中已经写到,
为了大家方便,我再把people.json长啥样贴出来,如图:
输出schema就一行代码:
df.printSchema()object SparkSQLExample {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setMaster("local").setAppName("spark SQL basic example")
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val df = new SQLContext(sc).read.json("E:\\spark-2.1.0\\spark-2.1.0\\examples\\src\\main\\resources\\people.json")
df.show()
df.printSchema()
}
}
看截屏不清楚,为了让大家看的清楚,只截结果:
StringIndexer是指把一组字符型标签编码成一组标签索引,索引的范围为0到标签数量,索引构建的顺序为标签的频率,优先编码频率较大的标签,所以出现频率最高的标签为0号。如果输入的是数值型的,我们会把它转化成字符型,然后再对其进行编码。在pipeline组件,比如Estimator和Transformer中,想要用到字符串索引的标签的话,我们一般需要通过setInputCol来设置输入列。另外,有的时候我们通过一个数据集构建了一个StringIndexer,然后准备把它应用到另一个数据集上的时候,会遇到新数据集中有一些没有在前一个数据集中出现的标签,这时候一般有两种策略来处理:第一种是抛出一个异常(默认情况下),第二种是通过掉用 setHandleInvalid("skip")来彻底忽略包含这类标签的行。
VectorAssembler是一个transformer,将多列数据转化为单列的向量列。
转化前的数据:
id | hour | mobile | userFeatures | clicked
----|------|--------|------------------|---------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0
转化后的数据:
id | hour | mobile | userFeatures | clicked | features
----|------|--------|------------------|---------|-----------------------------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0 | [18.0, 1.0, 0.0, 10.0, 0.5]
随机森林
http://blog.csdn.net/ac540101928/article/details/51689505 感谢原作者