Tensorflow实践:用神经网络训练分类器

正文共5873个字,3张图,预计阅读时间15分钟 。


任务:

使用tensorflow训练一个神经网络作为分类器,分类的数据点如下:


Tensorflow实践:用神经网络训练分类器_第1张图片

螺旋形数据点


原理


数据点一共有三个类别,而且是螺旋形交织在一起,显然是线性不可分的,需要一个非线性的分类器。这里选择神经网络。


输入的数据点是二维的,因此每个点只有x,y坐标这个原始特征。这里设计的神经网络有两个隐藏层,每层有50个神经元,足够抓住数据点的高维特征(实际上每层10个都够用了)。最后输出层是一个逻辑回归,根据隐藏层计算出的50个特征来预测数据点的分类(红、黄、蓝)。


一般训练数据多的话,应该用随机梯度下降来训练神经网络,这里训练数据较少(300),就直接批量梯度下降了。


# 导入包、初始化

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots

plt.rcParams['image.interpolation'] = 'nearest'

plt.rcParams['image.cmap'] = 'gray


'# 生成螺旋形的线形不可分数据点

np.random.seed(0) N = 100 # 每个类的数据个数

D = 2 # 输入维度

K = 3 # 类的个数

X = np.zeros((N*K,D)) num_train_examples = X.shape[0] y = np.zeros(N*K, dtype='uint8')

for j in xrange(K):  ix = range(N*j,N*(j+1))  r = np.linspace(0.0,1,N) # radius  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]  y[ix] = j fig = plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.xlim([-1,1]) plt.ylim([-1,1])


Tensorflow实践:用神经网络训练分类器_第2张图片

螺旋形数据点


打印输出输入X和label的shape


num_label = 3

labels = (np.arange(num_label) == y[:,None]).astype(np.float32) labels.shape


(300, 3)


X.shape


(300, 2)


用tensorflow构建神经网络


import math N = 100 # 每个类的数据个数

D = 2 # 输入维度

num_label = 3 # 类的个数

num_data = N * num_label hidden_size_1 = 50

hidden_size_2 = 50

beta = 0.001 # L2 正则化系数

learning_rate = 0.1 # 学习速率

labels = (np.arange(num_label) == y[:,None]).astype(np.float32) graph = tf.Graph()

with graph.as_default():    x = tf.constant(X.astype(np.float32))    tf_labels = tf.constant(labels)        # 隐藏层1    hidden_layer_weights_1 = tf.Variable(    tf.truncated_normal([D, hidden_size_1], stddev=math.sqrt(2.0/num_data)))    hidden_layer_bias_1 = tf.Variable(tf.zeros([hidden_size_1]))        # 隐藏层2    hidden_layer_weights_2 = tf.Variable(    tf.truncated_normal([hidden_size_1, hidden_size_2], stddev=math.sqrt(2.0/hidden_size_1)))    hidden_layer_bias_2 = tf.Variable(tf.zeros([hidden_size_2]))        # 输出层    out_weights = tf.Variable(    tf.truncated_normal([hidden_size_2, num_label], stddev=math.sqrt(2.0/hidden_size_2)))    out_bias = tf.Variable(tf.zeros([num_label]))        z1 = tf.matmul(x, hidden_layer_weights_1) + hidden_layer_bias_1    h1 = tf.nn.relu(z1)        z2 = tf.matmul(h1, hidden_layer_weights_2) + hidden_layer_bias_2    h2 = tf.nn.relu(z2)        logits = tf.matmul(h2, out_weights) + out_bias        # L2正则化    regularization = tf.nn.l2_loss(hidden_layer_weights_1) + tf.nn.l2_loss(hidden_layer_weights_2) + tf.nn.l2_loss(out_weights)    loss = tf.reduce_mean(        tf.nn.softmax_cross_entropy_with_logits(labels=tf_labels, logits=logits) + beta * regularization)        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)        train_prediction = tf.nn.softmax(logits)    weights = [hidden_layer_weights_1, hidden_layer_bias_1, hidden_layer_weights_2, hidden_layer_bias_2, out_weights, out_bias]  


上一步相当于搭建了神经网络的骨架,现在需要训练。每1000步训练,打印交叉熵损失和正确率。


num_steps = 50000

def accuracy(predictions, labels):    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))          / predictions.shape[0])def relu(x):    return np.maximum(0,x)          

with tf.Session(graph=graph) as session:    tf.global_variables_initializer().run()    print('Initialized')    

for step in range(num_steps):        _, l, predictions = session.run([optimizer, loss, train_prediction])            if (step % 1000 == 0):            print('Loss at step %d: %f' % (step, l))            print('Training accuracy: %.1f%%' % accuracy(                predictions, labels))            w1, b1, w2, b2, w3, b3 = weights  

 # 显示分类器    h = 0.02    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),                         np.arange(y_min, y_max, h))    Z = np.dot(relu(np.dot(relu(np.dot(np.c_[xx.ravel(), yy.ravel()], w1.eval()) + b1.eval()), w2.eval()) + b2.eval()), w3.eval()) + b3.eval()    Z = np.argmax(Z, axis=1)    Z = Z.reshape(xx.shape)    fig = plt.figure()    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)    plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)    plt.xlim(xx.min(), xx.max())    plt.ylim(yy.min(), yy.max())


Initialized

Loss at step 0: 1.132545

Training accuracy: 43.7%

Loss at step 1000: 0.257016

Training accuracy: 94.0%

Loss at step 2000: 0.165511

Training accuracy: 98.0%

Loss at step 3000: 0.149266

Training accuracy: 99.0%

Loss at step 4000: 0.142311

Training accuracy: 99.3%

Loss at step 5000: 0.137762

Training accuracy: 99.3%

Loss at step 6000: 0.134356

Training accuracy: 99.3%

Loss at step 7000: 0.131588

Training accuracy: 99.3%

Loss at step 8000: 0.129299

Training accuracy: 99.3%

Loss at step 9000: 0.127340

Training accuracy: 99.3%

Loss at step 10000: 0.125686

Training accuracy: 99.3%

Loss at step 11000: 0.124293

Training accuracy: 99.3%

Loss at step 12000: 0.123130

Training accuracy: 99.3%

Loss at step 13000: 0.122149

Training accuracy: 99.3%

Loss at step 14000: 0.121309

Training accuracy: 99.3%

Loss at step 15000: 0.120542

Training accuracy: 99.3%

Loss at step 16000: 0.119895

Training accuracy: 99.3%

Loss at step 17000: 0.119335

Training accuracy: 99.3%

Loss at step 18000: 0.118836

Training accuracy: 99.3%

Loss at step 19000: 0.118376

Training accuracy: 99.3%

Loss at step 20000: 0.117974

Training accuracy: 99.3%

Loss at step 21000: 0.117601

Training accuracy: 99.3%

Loss at step 22000: 0.117253

Training accuracy: 99.3%

Loss at step 23000: 0.116887

Training accuracy: 99.3%

Loss at step 24000: 0.116561

Training accuracy: 99.3%

Loss at step 25000: 0.116265

Training accuracy: 99.3%

Loss at step 26000: 0.115995

Training accuracy: 99.3%

Loss at step 27000: 0.115750

Training accuracy: 99.3%

Loss at step 28000: 0.115521

Training accuracy: 99.3%

Loss at step 29000: 0.115310

Training accuracy: 99.3%

Loss at step 30000: 0.115111

Training accuracy: 99.3%

Loss at step 31000: 0.114922

Training accuracy: 99.3%

Loss at step 32000: 0.114743

Training accuracy: 99.3%

Loss at step 33000: 0.114567

Training accuracy: 99.3%

Loss at step 34000: 0.114401

Training accuracy: 99.3%

Loss at step 35000: 0.114242

Training accuracy: 99.3%

Loss at step 36000: 0.114086

Training accuracy: 99.3%

Loss at step 37000: 0.113933

Training accuracy: 99.3%

Loss at step 38000: 0.113785

Training accuracy: 99.3%

Loss at step 39000: 0.113644

Training accuracy: 99.3%

Loss at step 40000: 0.113504

Training accuracy: 99.3%

Loss at step 41000: 0.113366

Training accuracy: 99.3%

Loss at step 42000: 0.113229

Training accuracy: 99.3%

Loss at step 43000: 0.113096

Training accuracy: 99.3%

Loss at step 44000: 0.112966

Training accuracy: 99.3%

Loss at step 45000: 0.112838

Training accuracy: 99.3%

Loss at step 46000: 0.112711

Training accuracy: 99.3%

Loss at step 47000: 0.112590

Training accuracy: 99.3%

Loss at step 48000: 0.112472

Training accuracy: 99.3%

Loss at step 49000: 0.112358

Training accuracy: 99.3%


Tensorflow实践:用神经网络训练分类器_第3张图片

分类器.png


原文链接:https://www.jianshu.com/p/25a709c70ae3


查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:

www.leadai.org


请关注人工智能LeadAI公众号,查看更多专业文章

Tensorflow实践:用神经网络训练分类器_第4张图片

大家都在看

640.png?

LSTM模型在问答系统中的应用

基于TensorFlow的神经网络解决用户流失概览问题

最全常见算法工程师面试题目整理(一)

最全常见算法工程师面试题目整理(二)

TensorFlow从1到2 | 第三章 深度学习革命的开端:卷积神经网络

装饰器 | Python高级编程

今天不如来复习下Python基础


640.png?

你可能感兴趣的:(Tensorflow实践:用神经网络训练分类器)