- OpenCV及基本用法
m0_74823683
opencv人工智能计算机视觉
一.OpenCV介绍1.OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库。OpenCV是最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
- MD5加密
计蒙不吃鱼
Android开发相关MD5MD5加密
简介:MD5的全称是Message-DigestAlgorithm5(信息-摘要算法),它是一种单向加密算法,可以将输入的信息加密转换为128位固定长度的散列值,用于检验数据传输过程中的完整性。在90年代初由MITLaboratoryforComputerScience和RSADataSecurityInc的RonaldL.Rivest开发出来,经MD2、MD3和MD4发展而来。出现的两种观点:1
- InfiniteHiP - 在单个GPU上扩展 LLM 上下文至300万tokens
伊织code
#PaperReadingInfiniteHiP推理GPULLMtoken
InfiniteHiP:ExtendingLanguageModelContextUpto3MillionTokensonaSingleGPUPaper:https://huggingface.co/papers/2502.08910Sourcecode:https://github.com/DeepAuto-AI/hip-attention/SGLangIntegrationavailablen
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 简单枚举 / 枚举排列
Zhouqi_Hua
Henry学C++Henry的ACM学习笔记蓝桥杯c++算法深度优先力扣
本文参考《算法竞赛入门经典》第七章《暴力枚举法》,提出的是暴力“列举”出所有可能性并一一试验的方法。目录1简单枚举2枚举排列2.1生成1~n的排列2.2生成可重集的排列2.3解答树2.4下一个排列一、简单枚举简单枚举就是枚举一些例如整数、子串的简单类型。但是如果拿到题目直接上手枚举,可能会导致枚举次数过多(甚至引起TLE)。因此在枚举前先要进行分析。比如例题除法(Division,Uva725):
- 集成学习算法简述
終不似少年遊*
人工智能学习进阶集成学习算法机器学习人工智能提高效率
目录1.必要的导入2.Bagging集成3.基于matplotlib写一个函数对决策边界做可视化4.总结图中结论5.扩展说明1.必要的导入#Tosupportbothpython2andpython3from__future__importdivision,print_function,unicode_literals#Commonimportsimportnumpyasnpimportos#to
- COP 3402: Lexical Analyzer
后端
UniversityofCentralFloridaSchoolofElectricalEngineering&ComputerScienceCOP3402:SystemSoftwareSpring2025Homework#2(LexicalAnalyzer)DueSunday,February16th,2025by11:59p.m.Goal:Inthisassignmentyourteamhav
- DexVLA:通用机器人控制中具有插件式扩散专家的视觉语言模型
硅谷秋水
大模型智能体计算机视觉语言模型计算机视觉深度学习机器学习人工智能
25年2月来自美的集团和华东师范的论文“DexVLA:Vision-LanguageModelwithPlug-InDiffusionExpertforGeneralRobotControl”。让机器人能够在不同的环境中执行不同的任务是机器人学习的核心挑战。虽然视觉-语言-动作(VLA)模型已显示出可泛化机器人技能的前景,但要充分发挥其潜力,需要解决动作表示和有效训练方面的限制。当前的VLA模型通
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- AI系统微服务架构原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统微服务架构原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:微服务架构,API网关,分布式系统,SOA,RESTfulAPI1.背景介绍1.1问题的由来随着互联网应用的快速发展,单一应用程序越来越难以满足业务需求的增长及扩展性要求。大型企业级系统的开发面临着一系列挑战,如性能瓶颈、部署复杂性、维护成本上升以及功能模
- 详细说说VIT架构和Transformer架构的异同
AI生成曾小健
大模型LLM面试指南多模态MLLM大模型面试指南架构transformer深度学习
GPT-4oVisionTransformer(ViT)和Transformer架构之间的关系非常紧密,因为ViT是直接将Transformer应用到视觉任务中的一种方法。不过,由于图像数据与自然语言数据的特性不同,ViT在实现上对标准Transformer架构做了一些调整。以下是ViT和Transformer架构的异同点详细分析:1.Transformer架构的回顾Transformer是一种用
- 计算机视觉(Computer Vision,CV)四大基本任务--分类、检测、定位、分割
明月光舞
计算机视觉计算机视觉目标检测深度学习
文章目录前言一、计算机视觉任务一:目标分类常用数据集常见网络结构二、计算机视觉任务二:目标定位三、计算机视觉任务三:目标检测常用数据集常见网络结构四、计算机视觉任务四:目标分割常用数据集常见网络结构前言计算机视觉(ComputerVision,CV)是一门研究如何让机器具备“看”的能力的学科,以人或动物的视觉能力为参照,通过计算机对视觉数据(图像、视频等)的处理、学习、推理判断,复现出、模拟出甚至
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- 2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
GSRA会务组房老师
计算机视觉人工智能数据挖掘图像处理目标检测云计算语言模型
2025年计算机视觉研究进展与应用国际学术会议(ACVRA2025)2025InternationalConferenceonAdvancesinComputerVisionResearchandApplications重要信息2025年3月28-30日南京一轮截稿日期:2024年12月26日EI检索稳定早投稿,早审稿,早录用【会议简介】2025年计算机视觉研究进展与应用国际学术会议(ACVRA2
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- 数据管道与数据流原理与代码实战案例讲解
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据管道与数据流原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在当今数字化时代,数据已成为企业和社会运转的核心资产。随着数据量的爆炸性增长,如何高效、安全、可靠地处理和传输这些数据,成为了许多企业和组织面临的重要挑战。数据管道和数据流技术应运而生,它们为我们提供了一个高效、灵活的数据处理框架。1.2
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- 第 1 课 树莓派5介绍
嵌入式老牛
树莓派之基本应用单片机嵌入式硬件
详细的介绍可参见:https://www.raspberrypi.com/documentation/computers/raspberry-pi.htmlRaspberryPi,中文名为“树莓派”,简写为Rpi,是一款只有信用卡大小的计算机的计算机,由英国的树莓派基金会所开发,被赋予的希望是能够帮助全世界的孩子学习编程,并能够了解计算机是如何工作的。树莓派可连接键盘、鼠标和网线,同时拥有视觉模拟
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- try-except-else-finally结构的使用
print('name')
Pythonpython开发语言pycharmvisualstudiocodelinux
笔记try:num1=int(input('请输入一个整数:'))num2=int(input('请输入另一个整数:'))result=num1/num2exceptZeroDivisionError:print('除数不能为0')exceptValueError:print('不能将字符串转成整数')exceptBaseException:print('未知异常')else:print('结果:
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- CVPR 2023 | 一文看尽12篇Best Paper候选(附合集)
马拉AI
人工智能
CVPR2023日前已经放榜,并公布了12篇bestpaper候选论文。本文就带大家一睹这12篇论文的风采,相关合集点击这里跳转获取。1、EgoEgo:通过自我头部姿势估计进行自我身体姿势估计Ego-BodyPoseEstimationviaEgo-HeadPoseEstimation项目地址:https://lijiaman.github.io/projects/egoego/从以自我为中心的视
- WiFi设备的配网流程(总概述)
周周周诶。
通信协议网络服务器运维物联网嵌入式
目录Wi-Fi配网的流程方式1:Soft-AP(热点模式)过程技术原理⭐优缺点方式2:SmartConfig/EZMode(智能配网)过程技术原理⭐优缺点方式3:蓝牙辅助配网过程技术原理⭐优缺点Wi-Fi设备的配网成功后,如何保持连接?总结Wi-Fi设备的配网(Provisioning)是指将设备连接到Wi-Fi网络,并让它能够与本地或云端服务器通信。这个过程涉及多个技术协议和步骤,主要包括发现(
- python异常处理
一念&
其它python开发语言
基本语法1.try-except结构try:#可能会抛出异常的代码块num=1/0#这里会引发ZeroDivisionError异常exceptZeroDivisionError:#处理ZeroDivisionError异常的代码块print("除数不能为零!")在上述代码中,try块中的1/0会引发ZeroDivisionError异常,程序会立即跳转到except块中执行相应的处理代码。2.捕
- DARTS-PT: 重新思考可微分神经架构搜索中的架构选择
凌洲丰Edwina
DARTS-PT:重新思考可微分神经架构搜索中的架构选择darts-pt[ICLR2021OutstandingPaper]RethinkingArchitectureSelectioninDifferentiableNAS项目地址:https://gitcode.com/gh_mirrors/da/darts-pt项目介绍DARTS-PT是一个基于GitHub的开源项目,源自ICLR2021的一
- 大语言模型原理与工程实践:初探大语言模型
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:初探大语言模型作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:大语言模型,机器学习,自然语言处理,深度学习,工程实践1.背景介绍1.1问题的由来随着互联网的飞速发展,人类产生和消费的数据量呈指数级增长。如何高效地处理和分析这些海量数据,提取其中的有用信息,成为了当前学术界和工业界共同关注的问题。自然语言处理(NLP)
- 开发规范与编码标准原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
开发规范与编码标准原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:开发规范,编码标准,版本控制,团队协作,代码质量1.背景介绍1.1问题的由来在软件开发的世界里,“代码”是构建系统的核心元素。随着团队规模的扩大和项目复杂度的增加,如何确保代码质量和一致性成为了不可避免的挑战。不一致的编码风格、缺乏文档、难以追踪的历史版本
- DeepSeek-VL2 、 qwen2.5 vl 技术选型比较
天机️灵韵
人工智能deepseekqwen
在视觉-语言(Vision-Language,VL)多模态模型领域,DeepSeek-VL2(深度求索)和Qwen2.5-VL(阿里云通义千问)均是国内领先的技术方案。以下是两者的技术选型对比分析,涵盖架构设计、性能、适用场景和实际应用考量:1.核心架构对比维度DeepSeek-VL2Qwen2.5-VL视觉编码器基于改进的ViT(VisionTransformer)类似CLIP的ViT+跨模态注
- 深度学习-医学影像诊断
小赖同学啊
人工智能深度学习人工智能
以下以使用深度学习进行医学影像(如X光片)的肺炎诊断为例,为你展示基于PyTorch框架的代码实现。我们将构建一个简单的卷积神经网络(CNN)模型,使用公开的肺炎X光影像数据集进行训练和评估。1.安装必要的库pipinstalltorchtorchvisionnumpymatplotlibpandas2.代码实现importtorchimporttorch.nnasnnimporttorch.op
- Neo4j原理与代码实例讲解
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Neo4j原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着互联网的快速发展和数据量的爆炸式增长,传统的数据库系统在处理复杂关联数据时逐渐显露出局限性。为了更好地处理这种复杂关系,图数据库应运而生。Neo4j作为图数据库领域的佼佼者,因其独特的图数据存储和查询能力,受到了广泛关注。1.2研究现状目前,图
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比