- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 模型剪枝综述
发狂的小花
人工智能#模型部署深度学习人工智能模型部署模型剪枝性能优化
目录1深度神经网络的稀疏性:2剪枝算法分类:3具体的剪枝方法包括:4剪枝算法流程:5几种常见的剪枝算法:6结构化剪枝和非结构化剪枝各有其优缺点:7剪枝算法对模型精度的影响8影响剪枝算法对模型精度的因素模型压缩中的剪枝算法是一种应用广泛的模型压缩方法,其通过剔除模型中“不重要”的权重,来减少模型的参数量和计算量,同时尽量保证模型的精度不受影响。模型剪枝的核心是模型中的权重、激活、梯度等是稀疏的,减少
- 图像处理之蒸馏
醉后才知酒浓
面试题OpenCV图像处理人工智能计算机视觉深度学习
蒸馏什么是蒸馏蒸馏技术分类什么是轨迹一致性蒸馏(TCD)什么是蒸馏在图像处理领域,蒸馏是一种模型压缩和知识迁移的技术。它的基本思想是利用一个大型且复杂的模型(教师模型)来指导一个小型且简单的模型(学生模型)的训练。教师模型通常具有较高的性能和准确性,但由于其复杂性和计算成本,可能不适合在资源受限的环境中使用。因此,蒸馏的目标是将教师模型的知识转移到学生模型中,以便在保持或接近教师模型性能的同时,降
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 大模型训练和推理
李明朔
AIGC深度学习人工智能
文章目录一、NLP基础1.Tokenizer2.positionencoding3.注意力机制与transformer架构二、大模型训练1.SFT训练2.RLHF训练3.分布式并行训练技术(1)模型并行(2)数据并行4.MoE技术4.PEFT训练5.上下文扩展技术三、大模型推理1.模型压缩(1)剪枝(2)量化2.显存优化技术3.调度优化技术4.请求优化技术5.采样和解码加速6.模型并行策略7.其他
- 基于深度学习的高效模型压缩
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的高效模型压缩技术在确保模型性能的同时,显著减少了模型的存储需求和计算复杂度,从而使得深度学习模型能够更好地适应资源受限的环境(如移动设备、嵌入式系统)并加快推理速度。以下是关于高效模型压缩的详细讨论:1.模型压缩的背景与挑战随着深度学习模型的不断发展,模型规模和复杂性大幅增加,特别是在计算机视觉、自然语言处理等领域,模型通常包含数以亿计的参数。这种大规模模型虽然能够实现高精度,但其计
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 模型压缩开源项目:阿里-tinyNAS/微软NNI/华为-vega
清风2022
tinyNAS神经网络AutoMLvega
文章目录阿里-TinyNAS使用流程步骤一:搜索模型结构步骤二:导出模型结果步骤三:使用搜索的模型结构图像分类任务目标检测任务华为-vega简介定位优点缺点微软NNI简介定位优点缺点阿里-TinyNAShttps://github.com/alibaba/lightweight-neural-architecture-search聚焦NAS,进行合理的模块划分;更偏向算法使用平台,搜索得到精度较好
- 自然语言处理 | (13)kenLM统计语言模型构建与应用
CoreJT
自然语言处理自然语言处理(NLP)kenLM工具库统计语言模型n-gram智能纠错
本篇博客中我们将学习如何使用KenLM工具构建统计语言模型,并使用它完成一个典型的'智能纠错'文本任务。目录1.实验准备2.训练数据3.训练语言模型4.模型压缩5.模型加载6.智能纠错1.实验准备安装依赖#安装依赖!aptinstalllibboost-all-dev!aptinstalllibbz2-dev!aptinstalllibeigen3-dev下载KenLM并编译#下载kenlm压缩包
- 今日arXiv最热NLP大模型论文:微软提出SliceGPT,删除25%模型参数,性能几乎无损
夕小瑶
自然语言处理人工智能
引言:探索大型语言模型的高效压缩方法随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,它们对计算和内存资源的巨大需求成为了一个不容忽视的问题。为了缓解这些资源限制,研究者们提出了多种模型压缩方法,其中剪枝(pruning)技术因其在后训练阶段应用的潜力而备受关注。然而,现有的剪枝技术面临着需要额外数据结构支持和在当前硬件上受限的加速效果等挑战。在这篇博客中,我们将探讨一种新的剪枝方案——S
- 不容错过|大模型等各行业最新赛事汇总,速递给你!
会议之眼
人工智能阿里云微信
比赛动态1、AICAS2024大挑战:通用算力大模型推理性能软硬协同优化挑战赛比赛简介:选手基于通义千问-7B大语言模型,可从多角度提出相关方法(如模型压缩,参数稀疏,精度量化和结构剪枝等),并结合Arm架构硬件特性和开源软件资源(比如硬件BF16,矢量矩阵乘,ArmComputeLibrary等)来系统优化提升大模型在硬件上的推理性能。最终通过赛题组委会指定的测试方案获取选手的优化方法的评分。初
- Yolov8_obb旋转框检测,模型剪枝压缩
早茶和猫
旋转框模型剪枝YOLO剪枝目标检测算法人工智能
Yolov8_obb模型压缩之模型剪枝一、剪枝原理和pipleline参考:yolov5模型压缩之模型剪枝模型压缩(二)yolov5剪枝本次使用稀疏训练对channel维度进行剪枝,来自论文LearningEfficientConvolutionalNetworksThroughNetworkSlimming。其实原理很容易理解,我们知道bn层中存在两个可训练参数γ,β,输入经过bn获得归一化后的
- Threejs in autonomous driving -(2)模型精简
土肥圆_c1ab
在开发准备阶段建模同学都会提供一个车模,从前段考量一般来说超过100kb都算是大文件了,这个模型一般是obj+mtl文件,这两个一般都会超过MB。推动精简的话都非常都难。精简方案删减模型的顶点和面片模型压缩第一种专业性比较强,我们是搞不定的,那么就可以从第二种思路为出发点。通过万能的搜索引擎搜索我们可以找到被誉为3d业界的json格式的gltf。gltf简介。这里推荐两个工具obj2gltfhtt
- 训练和部署之间的区别-模型压缩
An_ich
深度学习python开发语言人工智能网络算法深度学习机器学习
神经网络训练神经网络训练的本质就是找到一个f(x),只不过是一个参数量很大的f(x)那么神经网络训练和部署之间的区别就是减少参数量为什么要减少参数量1.大模型不方便进行部署,网络的推断速度比较慢2.对于移动端等设备也没有这么强的算力3.对于网络训练的结果,也就是网络训练中学习到的知识和网络参数量两者的关系不是线性的,知识和参数量之间的关系更趋向于一个log函数怎样减少参数量1.减小参数的精度例如将
- AI模型压缩技术
SugarPPig
人工智能人工智能
模型压缩技术是指通过一系列方法和技巧,减小深度学习模型的大小和计算量,同时尽量保持模型的性能。这对于在资源受限的设备上部署模型、减少模型传输和存储成本以及提高模型推理速度都非常有用。以下是一些常见的模型压缩技术:参数剪枝(Pruning):通过删除模型中不重要的参数来减小模型的大小。剪枝方法可以基于参数的重要性进行选择,例如,通过设置阈值来删除小于该阈值的参数。量化(Quantization):将
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- 第五节课 LMDeploy 大模型量化部署实践(笔记)
幽径微澜
书生·浦语大模型实战营(笔记笔记python
来源:(5)LMDeploy大模型量化部署实践_哔哩哔哩_bilibili课程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md1.大模型部署背景(1)模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的要求,常常对需要对模型进行优化,例如模型压缩和硬件
- 【书生·浦语大模型实战营05】《(5)LMDeploy 大模型量化部署实践》学习笔记
songyuc
学习笔记
《(5)LMDeploy大模型量化部署实践》课程文档:《LMDeploy的量化和部署》1、大模型部署背景1.1模型部署定义将训练好的模型在特定软硬件环境中启动的过程,使模型能够接收输入并返回预测结果为了满足性能和效率的需求,常常需要对模型进行优化,例如模型压缩和硬件加速产品形态云端、边缘计算端、移动端1.2大模型特点内存开销巨大庞大的参数量。7B模型仅权重就需要14+G显存采用自回归生成token
- Model Compression and Acceleration Overview
Ada's
认知智能认知计算片上互联边缘计算系统科学神经科学认知科学专题《智能芯片》
模型压缩、模型加速模型压缩方法:能够有效降低参数冗余减少存储占用、通信带宽、计算复杂度利部署线性或非线性量化:1/2bits,int8和fp16等;结构或非结构剪枝:deepcompression,channelpruning和networkslimming等;网络结构搜索(NAS:NetworkArchitectureSearch):DARTS,DetNAS、NAS-FCOS、Proxyless
- 初识人工智能,一文读懂过拟合&欠拟合和模型压缩的知识文集(3)
普修罗双战士
人工智能专栏人工智能机器学习自然语言处理语言模型人机交互计算机视觉
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一人工智能专栏人工智能专业知识学习二人工智能专栏人工智能专业知识学习三人工智能专栏人工智能专业知识学习四人工智能专栏人工智能专业知识学习五人工智能专栏人工智能专业知识学习六人工智能专栏人工智能专业知
- 对 MODNet 其他模块的剪枝探索
Maitre Chen
剪枝算法深度学习人工智能计算机视觉
写在前面先前笔者分享了《对MODNet主干网络MobileNetV2的剪枝探索》,没想到被选为了CSDN每天值得看系列,因为笔者开设的专栏《MODNet-Compression探索之旅》仅仅只是记录笔者在模型压缩领域的探索历程,对此笔者深感荣幸,非常感谢官方大大的认可!!!接下来,笔者会加倍努力,创作更多优质文章,为社区贡献更多有价值、有意思的内容!!!!本文将分享笔者对MODNet网络结构内部其
- Knowledge Distillation (1) 模块替换之bert-of-theseus-上篇
小蛋子
更好的阅读体验请跳转至KnowledgeDistillation(1)模块替换之bert-of-theseus-上篇如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,那这艘船还是原来的那艘船吗?-普鲁塔克最近遇到一个需要对算法加速的场景,了解到了一个比较简洁实用的方法:Bert-of-theseus,了解了原理后参考代码实验后,验证了其有效性,所以总结一下。模型压缩模型在设计之初都
- 改进yolov7网络(从轻量化方面的8个方法)
qhchao
YOLO网络计算机视觉
当谈到目标检测领域时,YOLOv7(YouOnlyLookOncev7)是一种非常流行的深度学习网络模型。虽然YOLOv7已经在精度和速度方面取得了显著的改进,但我们仍然可以从轻量化角度来进一步优化该模型。以下是8条关于如何从轻量化角度改进YOLOv7网络的建议:1.模型压缩:使用轻量化的模型压缩技术,如剪枝(pruning)和量化(quantization),来减小YOLOv7的模型大小。通过剪
- 本地模型能力适配
道亦无名
人工智能人工智能
本地模型能力适配是指将多模态大模型应用于本地设备或特定场景时,需要进行的一种技术处理。由于多模态大模型通常需要较大的计算资源和存储空间,直接将其部署到本地设备上可能会面临性能和效率的瓶颈。因此,需要进行本地模型能力适配,以适应本地设备的计算能力和存储限制。具体来说,本地模型能力适配可以通过以下几种方式实现:模型压缩:通过减少模型的大小和计算复杂度,使其更加适合本地设备的计算和存储能力。例如,可以使
- 将大模型与小模型结合的8种常用策略分享,附17篇案例论文和代码
深度之眼
人工智能干货深度学习干货机器学习人工智能深度学习大模型小模型
现在我们对大模型的研究逐渐转向了“降耗增效”,通过结合高性能低耗资的小模型,实现更高效的计算和内存利用,达到满足特定场景的需求、降低成本和提高效率、提升系统性能以及增强适应性和扩展性的目的。那么如何将大模型与小模型结合?目前较常用的策略有模型压缩(蒸馏、剪枝)、提示语压缩、联合推理、迁移学习、权值共享、集成学习等。咱们今天就来简单聊聊这8种策略。部分策略的具体步骤以及每种策略相关的参考论文我也放上
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- 大模型听课笔记——书生·浦语(5)
亲爱的阿基米德^
笔记
LMDeploy的量化和部署1大模型部署简介模型部署:将训练好的模型在特定软硬件环境中启动的过程,使模型能够接受输入并返回结果。为了满足性能和效率的需求。常常需要对模型进行优化,例如模型压缩和硬件加速产品形态:云端、变韵计算端、移动端计算设备:CPU、GPU、NPU、TPU等大模型的特点:内存开销巨大庞大的参数量采用自回归生成token,需要缓存Attentiondek/v,带来巨大的内存开销动态
- 【书生·浦语】大模型实战营——第五课笔记
Horace_01
笔记人工智能python语言模型
教程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md视频链接:https://www.bilibili.com/video/BV1iW4y1A77P大模型部署背景关于模型部署通常需要模型压缩和硬件加速大模型的特点1、显存、内存花销巨大2、动态shape,输入输出数量不定3、相对视觉模型,LLM结构简单,大部
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin